Loading…
Photoexcited silicon nanocrystals: mediators for the excitation of organic molecules
We report on spin‐flip activation of organic molecules from the ground state to one of the excited states having different electronic spin configurations. Based on photoexcitations in silicon (Si) nanocrystals, stored electronic energy can be transferred to other substances. The huge hydrogen passiv...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2009-06, Vol.206 (6), p.1295-1298 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on spin‐flip activation of organic molecules from the ground state to one of the excited states having different electronic spin configurations. Based on photoexcitations in silicon (Si) nanocrystals, stored electronic energy can be transferred to other substances. The huge hydrogen passivated surface being accessible for acceptor molecules, the tunable confinement energy of excitons and their very long radiative lifetime allow Si nanocrystals to act efficiently as photosensitizers. We demonstrate that the energy transfer is governed by electron exchange mechanism. Therefore a good overlap of the electron wave functions, of donor and acceptor, is crucial for the efficiency of this type of interaction. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 1862-6300 1862-6319 |
DOI: | 10.1002/pssa.200881058 |