Loading…
Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot
Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and control...
Saved in:
Published in: | physica status solidi (b) 2023-11, Vol.260 (11) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | physica status solidi (b) |
container_volume | 260 |
creator | Bo, Rui Tang, Yi Li, Can Zhang, Zhengzhong Liu, Hao |
description | Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics. |
doi_str_mv | 10.1002/pssb.202300266 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202300266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssb_202300266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhC0EEqWwZe0LpPjZiZMsoS1QqYCQyjryz3Mwat3KdpHYcQTOyElIBWI13yxmFh8hl8AmwBi_2qWkJ5xxMRQpj8gIKg6FaCs4JiMmalZAW_NTcpbSG2OsBgEjYudrNDl6o9ZUBUtXrxg3A994lb4_v2bRv2Ogj9irPBB9UH3AvI2YfMoqGKRz54YD6sMwp4uQMSqTfejp816FvN_Q2TafkxOn1gkv_nJMXm7nq-l9sXy6W0yvl4XhnOeibgC0s1oYlC2XViJ3prIlNqgFtlaWCE5oEDW0uhUlb1xVKmyMtVJXWIkxmfz-mrhNKaLrdtFvVPzogHUHR93BUffvSPwAUnFdYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bo, Rui ; Tang, Yi ; Li, Can ; Zhang, Zhengzhong ; Liu, Hao</creator><creatorcontrib>Bo, Rui ; Tang, Yi ; Li, Can ; Zhang, Zhengzhong ; Liu, Hao</creatorcontrib><description>Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202300266</identifier><language>eng</language><ispartof>physica status solidi (b), 2023-11, Vol.260 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53</cites><orcidid>0000-0002-8616-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bo, Rui</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Zhang, Zhengzhong</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</title><title>physica status solidi (b)</title><description>Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.</description><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAUhC0EEqWwZe0LpPjZiZMsoS1QqYCQyjryz3Mwat3KdpHYcQTOyElIBWI13yxmFh8hl8AmwBi_2qWkJ5xxMRQpj8gIKg6FaCs4JiMmalZAW_NTcpbSG2OsBgEjYudrNDl6o9ZUBUtXrxg3A994lb4_v2bRv2Ogj9irPBB9UH3AvI2YfMoqGKRz54YD6sMwp4uQMSqTfejp816FvN_Q2TafkxOn1gkv_nJMXm7nq-l9sXy6W0yvl4XhnOeibgC0s1oYlC2XViJ3prIlNqgFtlaWCE5oEDW0uhUlb1xVKmyMtVJXWIkxmfz-mrhNKaLrdtFvVPzogHUHR93BUffvSPwAUnFdYA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Bo, Rui</creator><creator>Tang, Yi</creator><creator>Li, Can</creator><creator>Zhang, Zhengzhong</creator><creator>Liu, Hao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8616-6620</orcidid></search><sort><creationdate>202311</creationdate><title>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</title><author>Bo, Rui ; Tang, Yi ; Li, Can ; Zhang, Zhengzhong ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Rui</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Zhang, Zhengzhong</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Rui</au><au>Tang, Yi</au><au>Li, Can</au><au>Zhang, Zhengzhong</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</atitle><jtitle>physica status solidi (b)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>260</volume><issue>11</issue><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.</abstract><doi>10.1002/pssb.202300266</doi><orcidid>https://orcid.org/0000-0002-8616-6620</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | physica status solidi (b), 2023-11, Vol.260 (11) |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pssb_202300266 |
source | Wiley-Blackwell Read & Publish Collection |
title | Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20and%20Thermal%20Bias%E2%80%90Driven%20Negative%20Magnetoresistance%20Effect%20in%20an%20Interacting%20Quantum%20Dot&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Bo,%20Rui&rft.date=2023-11&rft.volume=260&rft.issue=11&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202300266&rft_dat=%3Ccrossref%3E10_1002_pssb_202300266%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |