Loading…

Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot

Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and control...

Full description

Saved in:
Bibliographic Details
Published in:physica status solidi (b) 2023-11, Vol.260 (11)
Main Authors: Bo, Rui, Tang, Yi, Li, Can, Zhang, Zhengzhong, Liu, Hao
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53
container_end_page
container_issue 11
container_start_page
container_title physica status solidi (b)
container_volume 260
creator Bo, Rui
Tang, Yi
Li, Can
Zhang, Zhengzhong
Liu, Hao
description Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.
doi_str_mv 10.1002/pssb.202300266
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pssb_202300266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pssb_202300266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhC0EEqWwZe0LpPjZiZMsoS1QqYCQyjryz3Mwat3KdpHYcQTOyElIBWI13yxmFh8hl8AmwBi_2qWkJ5xxMRQpj8gIKg6FaCs4JiMmalZAW_NTcpbSG2OsBgEjYudrNDl6o9ZUBUtXrxg3A994lb4_v2bRv2Ogj9irPBB9UH3AvI2YfMoqGKRz54YD6sMwp4uQMSqTfejp816FvN_Q2TafkxOn1gkv_nJMXm7nq-l9sXy6W0yvl4XhnOeibgC0s1oYlC2XViJ3prIlNqgFtlaWCE5oEDW0uhUlb1xVKmyMtVJXWIkxmfz-mrhNKaLrdtFvVPzogHUHR93BUffvSPwAUnFdYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bo, Rui ; Tang, Yi ; Li, Can ; Zhang, Zhengzhong ; Liu, Hao</creator><creatorcontrib>Bo, Rui ; Tang, Yi ; Li, Can ; Zhang, Zhengzhong ; Liu, Hao</creatorcontrib><description>Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.202300266</identifier><language>eng</language><ispartof>physica status solidi (b), 2023-11, Vol.260 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53</cites><orcidid>0000-0002-8616-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bo, Rui</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Zhang, Zhengzhong</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><title>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</title><title>physica status solidi (b)</title><description>Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.</description><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAUhC0EEqWwZe0LpPjZiZMsoS1QqYCQyjryz3Mwat3KdpHYcQTOyElIBWI13yxmFh8hl8AmwBi_2qWkJ5xxMRQpj8gIKg6FaCs4JiMmalZAW_NTcpbSG2OsBgEjYudrNDl6o9ZUBUtXrxg3A994lb4_v2bRv2Ogj9irPBB9UH3AvI2YfMoqGKRz54YD6sMwp4uQMSqTfejp816FvN_Q2TafkxOn1gkv_nJMXm7nq-l9sXy6W0yvl4XhnOeibgC0s1oYlC2XViJ3prIlNqgFtlaWCE5oEDW0uhUlb1xVKmyMtVJXWIkxmfz-mrhNKaLrdtFvVPzogHUHR93BUffvSPwAUnFdYA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Bo, Rui</creator><creator>Tang, Yi</creator><creator>Li, Can</creator><creator>Zhang, Zhengzhong</creator><creator>Liu, Hao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8616-6620</orcidid></search><sort><creationdate>202311</creationdate><title>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</title><author>Bo, Rui ; Tang, Yi ; Li, Can ; Zhang, Zhengzhong ; Liu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Rui</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Zhang, Zhengzhong</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><collection>CrossRef</collection><jtitle>physica status solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Rui</au><au>Tang, Yi</au><au>Li, Can</au><au>Zhang, Zhengzhong</au><au>Liu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot</atitle><jtitle>physica status solidi (b)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>260</volume><issue>11</issue><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>Spin‐dependent electron transport is theoretically studied for a system with an interacting quantum dot sandwiched between a pair of ferromagnetic electrodes. By separately applying an electrical bias or a temperature gradient across the junction, a spin‐polarized current can be obtained and controlled by tuning the gate voltage. Interestingly, regardless of whether the electron transport is driven by the bias voltage or temperature difference, the current in the device always exhibits negative magnetoresistance under the control of the gate voltage. Such magnetoresistance anomalies in the current profile originate from the spin‐selective tunneling channels in quantum dots, which have been proven experimentally feasible. This device scheme is compatible with current technologies and has potential applications in spintronics or spin caloritronics.</abstract><doi>10.1002/pssb.202300266</doi><orcidid>https://orcid.org/0000-0002-8616-6620</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof physica status solidi (b), 2023-11, Vol.260 (11)
issn 0370-1972
1521-3951
language eng
recordid cdi_crossref_primary_10_1002_pssb_202300266
source Wiley-Blackwell Read & Publish Collection
title Electrical and Thermal Bias‐Driven Negative Magnetoresistance Effect in an Interacting Quantum Dot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20and%20Thermal%20Bias%E2%80%90Driven%20Negative%20Magnetoresistance%20Effect%20in%20an%20Interacting%20Quantum%20Dot&rft.jtitle=physica%20status%20solidi%20(b)&rft.au=Bo,%20Rui&rft.date=2023-11&rft.volume=260&rft.issue=11&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.202300266&rft_dat=%3Ccrossref%3E10_1002_pssb_202300266%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-7811bfdb3ce6926d6e2fc5d4e8eb3e9d64e1f3b13719b93428f54ae8cdd6b5e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true