Loading…
Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals
Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved....
Saved in:
Published in: | International journal of quantum chemistry 2003, Vol.93 (2), p.59-71 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3 |
container_end_page | 71 |
container_issue | 2 |
container_start_page | 59 |
container_title | International journal of quantum chemistry |
container_volume | 93 |
creator | Guidotti, C. Salvetti, O. Durante, N. Lamanna, U. T. Arrighini, G. P. |
description | Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003 |
doi_str_mv | 10.1002/qua.10537 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_10537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_Z48ZBRSV_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</originalsourceid><addsrcrecordid>eNp1kEtP3DAUhS1UpE6HLvoPvGWR4kcSJ-zoiALSCMSrrdhYN841mOYxdRwgP4b_ioeh7Fidq3vPd650CPnG2XfOmNj7N0IcMqm2yIyzUiVpzv98IrN4Y4nKWfGZfBmGe8ZYLnM1I8-Lvl2NAYLrO2hoxLswttTcYeuG4CfqOhrQtwPtLW3HJjiDXVzQywaiJGFaIe195QI0wz497ILz2Ey0G1v0zsTIle8N1qNHantPwx1SMGb0kab4AM34-nqdvj5VMDgTfwa89TFwh2zbKPj1Tefk-ufh1eI4WZ4dnSwOlomRLFMJCMF5CmlpUdhMsFpWRS5tlRcihboQWclrVLXJUhAKlMi5ErKqLJQAZWprOSe7m1zj-2HwaPXKuxb8pDnT6151LEa_9hq9exvvo2tw-tioz68P_hPJhoiN4tM7Af6vzpVUmf59eqRv0uLmx8XlL83lCxeYjk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</title><source>Wiley</source><creator>Guidotti, C. ; Salvetti, O. ; Durante, N. ; Lamanna, U. T. ; Arrighini, G. P.</creator><creatorcontrib>Guidotti, C. ; Salvetti, O. ; Durante, N. ; Lamanna, U. T. ; Arrighini, G. P.</creatorcontrib><description>Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.10537</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>calculation of multicenter two-electron integrals by numerical quadrature ; computational quantum chemistry in terms of Slater-type orbitals ; four- and three-center two-electron integrals ; general computational methods in quantum chemistry ; two-electron integrals and Slater orbitals</subject><ispartof>International journal of quantum chemistry, 2003, Vol.93 (2), p.59-71</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</citedby><cites>FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Guidotti, C.</creatorcontrib><creatorcontrib>Salvetti, O.</creatorcontrib><creatorcontrib>Durante, N.</creatorcontrib><creatorcontrib>Lamanna, U. T.</creatorcontrib><creatorcontrib>Arrighini, G. P.</creatorcontrib><title>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003</description><subject>calculation of multicenter two-electron integrals by numerical quadrature</subject><subject>computational quantum chemistry in terms of Slater-type orbitals</subject><subject>four- and three-center two-electron integrals</subject><subject>general computational methods in quantum chemistry</subject><subject>two-electron integrals and Slater orbitals</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kEtP3DAUhS1UpE6HLvoPvGWR4kcSJ-zoiALSCMSrrdhYN841mOYxdRwgP4b_ioeh7Fidq3vPd650CPnG2XfOmNj7N0IcMqm2yIyzUiVpzv98IrN4Y4nKWfGZfBmGe8ZYLnM1I8-Lvl2NAYLrO2hoxLswttTcYeuG4CfqOhrQtwPtLW3HJjiDXVzQywaiJGFaIe195QI0wz497ILz2Ey0G1v0zsTIle8N1qNHantPwx1SMGb0kab4AM34-nqdvj5VMDgTfwa89TFwh2zbKPj1Tefk-ufh1eI4WZ4dnSwOlomRLFMJCMF5CmlpUdhMsFpWRS5tlRcihboQWclrVLXJUhAKlMi5ErKqLJQAZWprOSe7m1zj-2HwaPXKuxb8pDnT6151LEa_9hq9exvvo2tw-tioz68P_hPJhoiN4tM7Af6vzpVUmf59eqRv0uLmx8XlL83lCxeYjk4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Guidotti, C.</creator><creator>Salvetti, O.</creator><creator>Durante, N.</creator><creator>Lamanna, U. T.</creator><creator>Arrighini, G. P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2003</creationdate><title>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</title><author>Guidotti, C. ; Salvetti, O. ; Durante, N. ; Lamanna, U. T. ; Arrighini, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>calculation of multicenter two-electron integrals by numerical quadrature</topic><topic>computational quantum chemistry in terms of Slater-type orbitals</topic><topic>four- and three-center two-electron integrals</topic><topic>general computational methods in quantum chemistry</topic><topic>two-electron integrals and Slater orbitals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guidotti, C.</creatorcontrib><creatorcontrib>Salvetti, O.</creatorcontrib><creatorcontrib>Durante, N.</creatorcontrib><creatorcontrib>Lamanna, U. T.</creatorcontrib><creatorcontrib>Arrighini, G. P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guidotti, C.</au><au>Salvetti, O.</au><au>Durante, N.</au><au>Lamanna, U. T.</au><au>Arrighini, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2003</date><risdate>2003</risdate><volume>93</volume><issue>2</issue><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.10537</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7608 |
ispartof | International journal of quantum chemistry, 2003, Vol.93 (2), p.59-71 |
issn | 0020-7608 1097-461X |
language | eng |
recordid | cdi_crossref_primary_10_1002_qua_10537 |
source | Wiley |
subjects | calculation of multicenter two-electron integrals by numerical quadrature computational quantum chemistry in terms of Slater-type orbitals four- and three-center two-electron integrals general computational methods in quantum chemistry two-electron integrals and Slater orbitals |
title | Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20quantum%20chemistry%20in%20terms%20of%20multicenter%20Slater-type%20orbitals:%20Entirely%20numerical%20procedure%20for%20the%20accurate%20evaluation%20of%20the%20basic%20integrals&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Guidotti,%20C.&rft.date=2003&rft.volume=93&rft.issue=2&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.10537&rft_dat=%3Cistex_cross%3Eark_67375_WNG_Z48ZBRSV_1%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |