Loading…

Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals

Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved....

Full description

Saved in:
Bibliographic Details
Published in:International journal of quantum chemistry 2003, Vol.93 (2), p.59-71
Main Authors: Guidotti, C., Salvetti, O., Durante, N., Lamanna, U. T., Arrighini, G. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3
cites cdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3
container_end_page 71
container_issue 2
container_start_page 59
container_title International journal of quantum chemistry
container_volume 93
creator Guidotti, C.
Salvetti, O.
Durante, N.
Lamanna, U. T.
Arrighini, G. P.
description Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003
doi_str_mv 10.1002/qua.10537
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qua_10537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_Z48ZBRSV_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</originalsourceid><addsrcrecordid>eNp1kEtP3DAUhS1UpE6HLvoPvGWR4kcSJ-zoiALSCMSrrdhYN841mOYxdRwgP4b_ioeh7Fidq3vPd650CPnG2XfOmNj7N0IcMqm2yIyzUiVpzv98IrN4Y4nKWfGZfBmGe8ZYLnM1I8-Lvl2NAYLrO2hoxLswttTcYeuG4CfqOhrQtwPtLW3HJjiDXVzQywaiJGFaIe195QI0wz497ILz2Ey0G1v0zsTIle8N1qNHantPwx1SMGb0kab4AM34-nqdvj5VMDgTfwa89TFwh2zbKPj1Tefk-ufh1eI4WZ4dnSwOlomRLFMJCMF5CmlpUdhMsFpWRS5tlRcihboQWclrVLXJUhAKlMi5ErKqLJQAZWprOSe7m1zj-2HwaPXKuxb8pDnT6151LEa_9hq9exvvo2tw-tioz68P_hPJhoiN4tM7Af6vzpVUmf59eqRv0uLmx8XlL83lCxeYjk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</title><source>Wiley</source><creator>Guidotti, C. ; Salvetti, O. ; Durante, N. ; Lamanna, U. T. ; Arrighini, G. P.</creator><creatorcontrib>Guidotti, C. ; Salvetti, O. ; Durante, N. ; Lamanna, U. T. ; Arrighini, G. P.</creatorcontrib><description>Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.10537</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>calculation of multicenter two-electron integrals by numerical quadrature ; computational quantum chemistry in terms of Slater-type orbitals ; four- and three-center two-electron integrals ; general computational methods in quantum chemistry ; two-electron integrals and Slater orbitals</subject><ispartof>International journal of quantum chemistry, 2003, Vol.93 (2), p.59-71</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</citedby><cites>FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Guidotti, C.</creatorcontrib><creatorcontrib>Salvetti, O.</creatorcontrib><creatorcontrib>Durante, N.</creatorcontrib><creatorcontrib>Lamanna, U. T.</creatorcontrib><creatorcontrib>Arrighini, G. P.</creatorcontrib><title>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</title><title>International journal of quantum chemistry</title><addtitle>Int. J. Quantum Chem</addtitle><description>Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003</description><subject>calculation of multicenter two-electron integrals by numerical quadrature</subject><subject>computational quantum chemistry in terms of Slater-type orbitals</subject><subject>four- and three-center two-electron integrals</subject><subject>general computational methods in quantum chemistry</subject><subject>two-electron integrals and Slater orbitals</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kEtP3DAUhS1UpE6HLvoPvGWR4kcSJ-zoiALSCMSrrdhYN841mOYxdRwgP4b_ioeh7Fidq3vPd650CPnG2XfOmNj7N0IcMqm2yIyzUiVpzv98IrN4Y4nKWfGZfBmGe8ZYLnM1I8-Lvl2NAYLrO2hoxLswttTcYeuG4CfqOhrQtwPtLW3HJjiDXVzQywaiJGFaIe195QI0wz497ILz2Ey0G1v0zsTIle8N1qNHantPwx1SMGb0kab4AM34-nqdvj5VMDgTfwa89TFwh2zbKPj1Tefk-ufh1eI4WZ4dnSwOlomRLFMJCMF5CmlpUdhMsFpWRS5tlRcihboQWclrVLXJUhAKlMi5ErKqLJQAZWprOSe7m1zj-2HwaPXKuxb8pDnT6151LEa_9hq9exvvo2tw-tioz68P_hPJhoiN4tM7Af6vzpVUmf59eqRv0uLmx8XlL83lCxeYjk4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Guidotti, C.</creator><creator>Salvetti, O.</creator><creator>Durante, N.</creator><creator>Lamanna, U. T.</creator><creator>Arrighini, G. P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2003</creationdate><title>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</title><author>Guidotti, C. ; Salvetti, O. ; Durante, N. ; Lamanna, U. T. ; Arrighini, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>calculation of multicenter two-electron integrals by numerical quadrature</topic><topic>computational quantum chemistry in terms of Slater-type orbitals</topic><topic>four- and three-center two-electron integrals</topic><topic>general computational methods in quantum chemistry</topic><topic>two-electron integrals and Slater orbitals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guidotti, C.</creatorcontrib><creatorcontrib>Salvetti, O.</creatorcontrib><creatorcontrib>Durante, N.</creatorcontrib><creatorcontrib>Lamanna, U. T.</creatorcontrib><creatorcontrib>Arrighini, G. P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guidotti, C.</au><au>Salvetti, O.</au><au>Durante, N.</au><au>Lamanna, U. T.</au><au>Arrighini, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals</atitle><jtitle>International journal of quantum chemistry</jtitle><addtitle>Int. J. Quantum Chem</addtitle><date>2003</date><risdate>2003</risdate><volume>93</volume><issue>2</issue><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>Ab initio quantum mechanical calculations in terms of multicenter Slater‐type orbitals require accurate evaluation of basic one‐ and two‐electron integrals, a difficult mathematical task that becomes in particular challenging in the two‐electron case as four different expansion centers are involved. Here, we propose to illustrate the feasibility of attacking the problem of the multiple integrations needed entirely by numerical quadratures, in conjunction with a strategic program organization that allows evaluating simultaneously sets of thousands of integrals exploiting the mean characteristics of the integrands. This approach, envisaged and implemented many years ago by two of the present authors (C.G., O.S.), perhaps without adequate exposure, is endowed in our experience with good properties. The program package, which allows dealing on the same footing with linear and nonlinear molecular geometries, has been largely revised by introducing suitable adjustments and improvements (in particular extension to orbitals with azimuthal quantum number l = 3). © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/qua.10537</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2003, Vol.93 (2), p.59-71
issn 0020-7608
1097-461X
language eng
recordid cdi_crossref_primary_10_1002_qua_10537
source Wiley
subjects calculation of multicenter two-electron integrals by numerical quadrature
computational quantum chemistry in terms of Slater-type orbitals
four- and three-center two-electron integrals
general computational methods in quantum chemistry
two-electron integrals and Slater orbitals
title Computational quantum chemistry in terms of multicenter Slater-type orbitals: Entirely numerical procedure for the accurate evaluation of the basic integrals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20quantum%20chemistry%20in%20terms%20of%20multicenter%20Slater-type%20orbitals:%20Entirely%20numerical%20procedure%20for%20the%20accurate%20evaluation%20of%20the%20basic%20integrals&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Guidotti,%20C.&rft.date=2003&rft.volume=93&rft.issue=2&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.10537&rft_dat=%3Cistex_cross%3Eark_67375_WNG_Z48ZBRSV_1%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3057-a22114a49fe2f520d3b863fb6824ad82591de7dc54a27a7261723bbfa9aa94fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true