Loading…
Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions
Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spi...
Saved in:
Published in: | Advanced quantum technologies (Online) 2023-06, Vol.6 (6), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Advanced quantum technologies (Online) |
container_volume | 6 |
creator | Wang, Huan‐Yu Wu, Huai‐Zhi Zhao, Erhai Wang, Ru‐Quan Wang, Xun‐Gao Liu, Wu‐Ming |
description | Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling.
In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures. |
doi_str_mv | 10.1002/qute.202300020 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qute_202300020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUTE202300020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhCMEElXplrUvkOK_KMkStQUqFVHUdB059nNrlNrBTkHdwQ04IyehaRGwY_XmjeabxUTRJcFDgjG9et62MKSYMrz_8EnUowkhcY45P_2jz6NBCE9dhBHGU9aL3qdWbaWxK7RYG92CQhO1AnTvFARU7VC7BrRojP18-xhDA1aBbVFhNrA35uCNU0aKGo29eelKhFUHZOS8h9A4qzq3cI2r3eqQnK9FAFR4YYNpjbPhIjrTog4w-L79aHkzKUZ38ezhdjq6nsWSco5jlsqUU6q1EjnXCUvSilWQpJnUPJFcZ1UmNOOaMkgyyHkmcgISBGYEEk0I60fDY6_0LgQPumy82Qi_Kwkuuw3LbsPyZ8M9kB-BV1PD7p90-bgsJr_sFxxgeig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Huan‐Yu ; Wu, Huai‐Zhi ; Zhao, Erhai ; Wang, Ru‐Quan ; Wang, Xun‐Gao ; Liu, Wu‐Ming</creator><creatorcontrib>Wang, Huan‐Yu ; Wu, Huai‐Zhi ; Zhao, Erhai ; Wang, Ru‐Quan ; Wang, Xun‐Gao ; Liu, Wu‐Ming</creatorcontrib><description>Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling.
In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.</description><identifier>ISSN: 2511-9044</identifier><identifier>EISSN: 2511-9044</identifier><identifier>DOI: 10.1002/qute.202300020</identifier><language>eng</language><subject>shifted edge modes ; spin‐dependent time‐periodic driving ; topological phase transitions</subject><ispartof>Advanced quantum technologies (Online), 2023-06, Vol.6 (6), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113</cites><orcidid>0000-0001-6571-4205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Huan‐Yu</creatorcontrib><creatorcontrib>Wu, Huai‐Zhi</creatorcontrib><creatorcontrib>Zhao, Erhai</creatorcontrib><creatorcontrib>Wang, Ru‐Quan</creatorcontrib><creatorcontrib>Wang, Xun‐Gao</creatorcontrib><creatorcontrib>Liu, Wu‐Ming</creatorcontrib><title>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</title><title>Advanced quantum technologies (Online)</title><description>Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling.
In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.</description><subject>shifted edge modes</subject><subject>spin‐dependent time‐periodic driving</subject><subject>topological phase transitions</subject><issn>2511-9044</issn><issn>2511-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhCMEElXplrUvkOK_KMkStQUqFVHUdB059nNrlNrBTkHdwQ04IyehaRGwY_XmjeabxUTRJcFDgjG9et62MKSYMrz_8EnUowkhcY45P_2jz6NBCE9dhBHGU9aL3qdWbaWxK7RYG92CQhO1AnTvFARU7VC7BrRojP18-xhDA1aBbVFhNrA35uCNU0aKGo29eelKhFUHZOS8h9A4qzq3cI2r3eqQnK9FAFR4YYNpjbPhIjrTog4w-L79aHkzKUZ38ezhdjq6nsWSco5jlsqUU6q1EjnXCUvSilWQpJnUPJFcZ1UmNOOaMkgyyHkmcgISBGYEEk0I60fDY6_0LgQPumy82Qi_Kwkuuw3LbsPyZ8M9kB-BV1PD7p90-bgsJr_sFxxgeig</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Wang, Huan‐Yu</creator><creator>Wu, Huai‐Zhi</creator><creator>Zhao, Erhai</creator><creator>Wang, Ru‐Quan</creator><creator>Wang, Xun‐Gao</creator><creator>Liu, Wu‐Ming</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6571-4205</orcidid></search><sort><creationdate>202306</creationdate><title>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</title><author>Wang, Huan‐Yu ; Wu, Huai‐Zhi ; Zhao, Erhai ; Wang, Ru‐Quan ; Wang, Xun‐Gao ; Liu, Wu‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>shifted edge modes</topic><topic>spin‐dependent time‐periodic driving</topic><topic>topological phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huan‐Yu</creatorcontrib><creatorcontrib>Wu, Huai‐Zhi</creatorcontrib><creatorcontrib>Zhao, Erhai</creatorcontrib><creatorcontrib>Wang, Ru‐Quan</creatorcontrib><creatorcontrib>Wang, Xun‐Gao</creatorcontrib><creatorcontrib>Liu, Wu‐Ming</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced quantum technologies (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Huan‐Yu</au><au>Wu, Huai‐Zhi</au><au>Zhao, Erhai</au><au>Wang, Ru‐Quan</au><au>Wang, Xun‐Gao</au><au>Liu, Wu‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</atitle><jtitle>Advanced quantum technologies (Online)</jtitle><date>2023-06</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2511-9044</issn><eissn>2511-9044</eissn><abstract>Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling.
In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.</abstract><doi>10.1002/qute.202300020</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6571-4205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2511-9044 |
ispartof | Advanced quantum technologies (Online), 2023-06, Vol.6 (6), p.n/a |
issn | 2511-9044 2511-9044 |
language | eng |
recordid | cdi_crossref_primary_10_1002_qute_202300020 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | shifted edge modes spin‐dependent time‐periodic driving topological phase transitions |
title | Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inducing%20Shifted%20Edge%20Modes%20by%20the%20Spin%E2%80%90Dependent%20Time%E2%80%90Periodical%20Driving%20and%20the%20Corresponding%20Topological%20Phase%20Transitions&rft.jtitle=Advanced%20quantum%20technologies%20(Online)&rft.au=Wang,%20Huan%E2%80%90Yu&rft.date=2023-06&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2511-9044&rft.eissn=2511-9044&rft_id=info:doi/10.1002/qute.202300020&rft_dat=%3Cwiley_cross%3EQUTE202300020%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |