Loading…

Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions

Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced quantum technologies (Online) 2023-06, Vol.6 (6), p.n/a
Main Authors: Wang, Huan‐Yu, Wu, Huai‐Zhi, Zhao, Erhai, Wang, Ru‐Quan, Wang, Xun‐Gao, Liu, Wu‐Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced quantum technologies (Online)
container_volume 6
creator Wang, Huan‐Yu
Wu, Huai‐Zhi
Zhao, Erhai
Wang, Ru‐Quan
Wang, Xun‐Gao
Liu, Wu‐Ming
description Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling. In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.
doi_str_mv 10.1002/qute.202300020
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_qute_202300020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUTE202300020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhCMEElXplrUvkOK_KMkStQUqFVHUdB059nNrlNrBTkHdwQ04IyehaRGwY_XmjeabxUTRJcFDgjG9et62MKSYMrz_8EnUowkhcY45P_2jz6NBCE9dhBHGU9aL3qdWbaWxK7RYG92CQhO1AnTvFARU7VC7BrRojP18-xhDA1aBbVFhNrA35uCNU0aKGo29eelKhFUHZOS8h9A4qzq3cI2r3eqQnK9FAFR4YYNpjbPhIjrTog4w-L79aHkzKUZ38ezhdjq6nsWSco5jlsqUU6q1EjnXCUvSilWQpJnUPJFcZ1UmNOOaMkgyyHkmcgISBGYEEk0I60fDY6_0LgQPumy82Qi_Kwkuuw3LbsPyZ8M9kB-BV1PD7p90-bgsJr_sFxxgeig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Huan‐Yu ; Wu, Huai‐Zhi ; Zhao, Erhai ; Wang, Ru‐Quan ; Wang, Xun‐Gao ; Liu, Wu‐Ming</creator><creatorcontrib>Wang, Huan‐Yu ; Wu, Huai‐Zhi ; Zhao, Erhai ; Wang, Ru‐Quan ; Wang, Xun‐Gao ; Liu, Wu‐Ming</creatorcontrib><description>Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling. In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.</description><identifier>ISSN: 2511-9044</identifier><identifier>EISSN: 2511-9044</identifier><identifier>DOI: 10.1002/qute.202300020</identifier><language>eng</language><subject>shifted edge modes ; spin‐dependent time‐periodic driving ; topological phase transitions</subject><ispartof>Advanced quantum technologies (Online), 2023-06, Vol.6 (6), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113</cites><orcidid>0000-0001-6571-4205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Huan‐Yu</creatorcontrib><creatorcontrib>Wu, Huai‐Zhi</creatorcontrib><creatorcontrib>Zhao, Erhai</creatorcontrib><creatorcontrib>Wang, Ru‐Quan</creatorcontrib><creatorcontrib>Wang, Xun‐Gao</creatorcontrib><creatorcontrib>Liu, Wu‐Ming</creatorcontrib><title>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</title><title>Advanced quantum technologies (Online)</title><description>Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling. In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.</description><subject>shifted edge modes</subject><subject>spin‐dependent time‐periodic driving</subject><subject>topological phase transitions</subject><issn>2511-9044</issn><issn>2511-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhCMEElXplrUvkOK_KMkStQUqFVHUdB059nNrlNrBTkHdwQ04IyehaRGwY_XmjeabxUTRJcFDgjG9et62MKSYMrz_8EnUowkhcY45P_2jz6NBCE9dhBHGU9aL3qdWbaWxK7RYG92CQhO1AnTvFARU7VC7BrRojP18-xhDA1aBbVFhNrA35uCNU0aKGo29eelKhFUHZOS8h9A4qzq3cI2r3eqQnK9FAFR4YYNpjbPhIjrTog4w-L79aHkzKUZ38ezhdjq6nsWSco5jlsqUU6q1EjnXCUvSilWQpJnUPJFcZ1UmNOOaMkgyyHkmcgISBGYEEk0I60fDY6_0LgQPumy82Qi_Kwkuuw3LbsPyZ8M9kB-BV1PD7p90-bgsJr_sFxxgeig</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Wang, Huan‐Yu</creator><creator>Wu, Huai‐Zhi</creator><creator>Zhao, Erhai</creator><creator>Wang, Ru‐Quan</creator><creator>Wang, Xun‐Gao</creator><creator>Liu, Wu‐Ming</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6571-4205</orcidid></search><sort><creationdate>202306</creationdate><title>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</title><author>Wang, Huan‐Yu ; Wu, Huai‐Zhi ; Zhao, Erhai ; Wang, Ru‐Quan ; Wang, Xun‐Gao ; Liu, Wu‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>shifted edge modes</topic><topic>spin‐dependent time‐periodic driving</topic><topic>topological phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huan‐Yu</creatorcontrib><creatorcontrib>Wu, Huai‐Zhi</creatorcontrib><creatorcontrib>Zhao, Erhai</creatorcontrib><creatorcontrib>Wang, Ru‐Quan</creatorcontrib><creatorcontrib>Wang, Xun‐Gao</creatorcontrib><creatorcontrib>Liu, Wu‐Ming</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced quantum technologies (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Huan‐Yu</au><au>Wu, Huai‐Zhi</au><au>Zhao, Erhai</au><au>Wang, Ru‐Quan</au><au>Wang, Xun‐Gao</au><au>Liu, Wu‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions</atitle><jtitle>Advanced quantum technologies (Online)</jtitle><date>2023-06</date><risdate>2023</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2511-9044</issn><eissn>2511-9044</eissn><abstract>Time periodic driving can serve as synthetic gauge fields and plays a key role in simulating dynamical topological materials. The periodically driven systems, where different spins (or sublattices) are engaged in the different dynamical driving processes are investigated. It is demonstrated that spin‐dependent time‐periodical periodic driving can result in shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies. Such shifted topological edge modes are not only related to the spin imbalance at each instantaneous time, but also the details of the dynamical driving. Here, it is also illustrated that the spin‐dependent time‐periodical driving can be conceived as the time‐spin coupling, and similar to the static spatial spin‐orbit coupling, tuning time‐spin coupling parameters can lead to topological phase transitions. Experimental simulations on the spin‐dependent time‐periodic driving are proposed by shaking optical super‐lattices and Raman assisted tunneling. In this article, the appearance of shifted topological edge modes with non‐zero (nor ±ω2$\pm \frac{\omega }{2}$) quasi‐energies in the spin‐dependent time‐periodic driving, which can also be conceived as the time‐spin coupling is demonstrated. Tuning the coupling parameters will lead to various types of topological phase transitions. This dynamical protocol can be potentially applied in realizing unexpected topological structures.</abstract><doi>10.1002/qute.202300020</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6571-4205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2511-9044
ispartof Advanced quantum technologies (Online), 2023-06, Vol.6 (6), p.n/a
issn 2511-9044
2511-9044
language eng
recordid cdi_crossref_primary_10_1002_qute_202300020
source Wiley-Blackwell Read & Publish Collection
subjects shifted edge modes
spin‐dependent time‐periodic driving
topological phase transitions
title Inducing Shifted Edge Modes by the Spin‐Dependent Time‐Periodical Driving and the Corresponding Topological Phase Transitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inducing%20Shifted%20Edge%20Modes%20by%20the%20Spin%E2%80%90Dependent%20Time%E2%80%90Periodical%20Driving%20and%20the%20Corresponding%20Topological%20Phase%20Transitions&rft.jtitle=Advanced%20quantum%20technologies%20(Online)&rft.au=Wang,%20Huan%E2%80%90Yu&rft.date=2023-06&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2511-9044&rft.eissn=2511-9044&rft_id=info:doi/10.1002/qute.202300020&rft_dat=%3Cwiley_cross%3EQUTE202300020%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2440-37c7422ffda94f5357b3be578cf45c4f8b8af34f23e58e948a91ecea031e5f113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true