Loading…

Classification of adsorbed protein static ToF-SIMS spectra by principal component analysis and neural networks

Analysis of the static time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) spectra of adsorbed protein films is reported using principal component analysis (PCA) and a novel artificial neural network (ANN) approach, NeuroSpectraNet, to classify chemically the spectra of the protein films. The...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2002-09, Vol.33 (9), p.715-728
Main Authors: Sanni, O. D., Wagner, M. S., Briggs, D., Castner, D. G., Vickerman, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis of the static time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) spectra of adsorbed protein films is reported using principal component analysis (PCA) and a novel artificial neural network (ANN) approach, NeuroSpectraNet, to classify chemically the spectra of the protein films. The ease of application and the efficiency with which each approach classified positive ion spectra from adsorbed films of 13 different proteins is reported and assessed. The ToF‐SIMS spectra of adsorbed protein films are especially difficult to analyze owing to the absence of unique peaks in the spectra of different proteins. Although PCA was able to differentiate successfully ToF‐SIMS spectra of adsorbed protein films using the ions generated from the fragmentation of the amino acids, differentiation of the spectra using the entire spectrum was unsuccessful. Outliers in several of the protein groups make classification of unknown spectra difficult, despite the use of only amino‐acid‐specific ions. However, NeuroSpectraNet successfully classified the spectra from 11 of the protein films using the whole positive ion spectra after a vector analysis enhancement had been incorporated into the neural network. Full classification of all 13 proteins was achieved by using the combined positive and negative ion spectra. However, as with PCA, ANN classification was enhanced when the input patterns only contained amino‐acid‐specific ions. The complex and multivariate nature of static SIMS spectra is a domain well suited to the application of neural networks for pattern recognition and classification. Copyright © 2002 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
DOI:10.1002/sia.1438