Loading…

Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia

Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yiel...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (45), p.e2403319
Main Authors: Bhat, Aamir Y, Bashir, Aejaz Ul, Jain, Priya, Bhat, Mohsin A, Ingole, Pravin Popinand
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3
container_end_page
container_issue 45
container_start_page e2403319
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Bhat, Aamir Y
Bashir, Aejaz Ul
Jain, Priya
Bhat, Mohsin A
Ingole, Pravin Popinand
description Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O ) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe O ) supported over N-doped carbon (CuFe O @NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe O @NC electrocatalyst.
doi_str_mv 10.1002/smll.202403319
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202403319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39082204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3</originalsourceid><addsrcrecordid>eNo9kd1u1DAQhS0EoqVwyyWaF8gy_tn83LFEbUFquxIs3EZOPGmNEntlOy37bLwcXhX2akaac44-zWHsPccVRxQf4zxNK4FCoZS8ecHOecllUdaieXnaOZ6xNzH-QpRcqOo1O5MN1kKgOmd_frigH2my7h7SA8FmSPaR4LtNFME7uKXo9z74JUK7XBEI2IKCT3dFq0Of761OejrEFOHJpgfY9Isz2iXY_j7ck4OfetBusDlLOwO3RfZB612iLBl9gM_ex0QG7mwK_mj4RmbJCDl55590MHA50ZBv8eAyXrQZaoTNPHtn9Vv2atRTpHf_5gXbXV3u2i_Fzfb6a7u5KYZSqKKmaiixUuumVlW_HntuKmkErblENFhhrYemHtalMkZLUoKUplogKtIcxSgv2Oo5dsgYMdDY7YOddTh0HLtjCd2xhO5UQjZ8eDbsl34mc5L__7r8C05VhKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bhat, Aamir Y ; Bashir, Aejaz Ul ; Jain, Priya ; Bhat, Mohsin A ; Ingole, Pravin Popinand</creator><creatorcontrib>Bhat, Aamir Y ; Bashir, Aejaz Ul ; Jain, Priya ; Bhat, Mohsin A ; Ingole, Pravin Popinand</creatorcontrib><description>Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O ) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe O ) supported over N-doped carbon (CuFe O @NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe O @NC electrocatalyst.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403319</identifier><identifier>PMID: 39082204</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (45), p.e2403319</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3</cites><orcidid>0000-0002-9755-4477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39082204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhat, Aamir Y</creatorcontrib><creatorcontrib>Bashir, Aejaz Ul</creatorcontrib><creatorcontrib>Jain, Priya</creatorcontrib><creatorcontrib>Bhat, Mohsin A</creatorcontrib><creatorcontrib>Ingole, Pravin Popinand</creatorcontrib><title>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O ) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe O ) supported over N-doped carbon (CuFe O @NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe O @NC electrocatalyst.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kd1u1DAQhS0EoqVwyyWaF8gy_tn83LFEbUFquxIs3EZOPGmNEntlOy37bLwcXhX2akaac44-zWHsPccVRxQf4zxNK4FCoZS8ecHOecllUdaieXnaOZ6xNzH-QpRcqOo1O5MN1kKgOmd_frigH2my7h7SA8FmSPaR4LtNFME7uKXo9z74JUK7XBEI2IKCT3dFq0Of761OejrEFOHJpgfY9Isz2iXY_j7ck4OfetBusDlLOwO3RfZB612iLBl9gM_ex0QG7mwK_mj4RmbJCDl55590MHA50ZBv8eAyXrQZaoTNPHtn9Vv2atRTpHf_5gXbXV3u2i_Fzfb6a7u5KYZSqKKmaiixUuumVlW_HntuKmkErblENFhhrYemHtalMkZLUoKUplogKtIcxSgv2Oo5dsgYMdDY7YOddTh0HLtjCd2xhO5UQjZ8eDbsl34mc5L__7r8C05VhKo</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Bhat, Aamir Y</creator><creator>Bashir, Aejaz Ul</creator><creator>Jain, Priya</creator><creator>Bhat, Mohsin A</creator><creator>Ingole, Pravin Popinand</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9755-4477</orcidid></search><sort><creationdate>202411</creationdate><title>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</title><author>Bhat, Aamir Y ; Bashir, Aejaz Ul ; Jain, Priya ; Bhat, Mohsin A ; Ingole, Pravin Popinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Aamir Y</creatorcontrib><creatorcontrib>Bashir, Aejaz Ul</creatorcontrib><creatorcontrib>Jain, Priya</creatorcontrib><creatorcontrib>Bhat, Mohsin A</creatorcontrib><creatorcontrib>Ingole, Pravin Popinand</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Aamir Y</au><au>Bashir, Aejaz Ul</au><au>Jain, Priya</au><au>Bhat, Mohsin A</au><au>Ingole, Pravin Popinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>45</issue><spage>e2403319</spage><pages>e2403319-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O ) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe O ) supported over N-doped carbon (CuFe O @NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe O @NC electrocatalyst.</abstract><cop>Germany</cop><pmid>39082204</pmid><doi>10.1002/smll.202403319</doi><orcidid>https://orcid.org/0000-0002-9755-4477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (45), p.e2403319
issn 1613-6810
1613-6829
language eng
recordid cdi_crossref_primary_10_1002_smll_202403319
source Wiley-Blackwell Read & Publish Collection
title Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Active%20Sites%20on%20Mesoporous%20CuFe%202%20O%204%20@N-Carbon%20Catalysts%20with%20Abundant%20Oxygen%20Vacancies%20and%20M-N-C%20Content%20for%20Boosted%20Nitrogen%20Reduction%20Toward%20Electrosynthesis%20of%20Ammonia&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Bhat,%20Aamir%20Y&rft.date=2024-11&rft.volume=20&rft.issue=45&rft.spage=e2403319&rft.pages=e2403319-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403319&rft_dat=%3Cpubmed_cross%3E39082204%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39082204&rfr_iscdi=true