Loading…
Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia
Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yiel...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.20 (45), p.e2403319 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3 |
container_end_page | |
container_issue | 45 |
container_start_page | e2403319 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Bhat, Aamir Y Bashir, Aejaz Ul Jain, Priya Bhat, Mohsin A Ingole, Pravin Popinand |
description | Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N
adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O
) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O
in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe
O
) supported over N-doped carbon (CuFe
O
@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH
formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe
O
@NC electrocatalyst. |
doi_str_mv | 10.1002/smll.202403319 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smll_202403319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39082204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3</originalsourceid><addsrcrecordid>eNo9kd1u1DAQhS0EoqVwyyWaF8gy_tn83LFEbUFquxIs3EZOPGmNEntlOy37bLwcXhX2akaac44-zWHsPccVRxQf4zxNK4FCoZS8ecHOecllUdaieXnaOZ6xNzH-QpRcqOo1O5MN1kKgOmd_frigH2my7h7SA8FmSPaR4LtNFME7uKXo9z74JUK7XBEI2IKCT3dFq0Of761OejrEFOHJpgfY9Isz2iXY_j7ck4OfetBusDlLOwO3RfZB612iLBl9gM_ex0QG7mwK_mj4RmbJCDl55590MHA50ZBv8eAyXrQZaoTNPHtn9Vv2atRTpHf_5gXbXV3u2i_Fzfb6a7u5KYZSqKKmaiixUuumVlW_HntuKmkErblENFhhrYemHtalMkZLUoKUplogKtIcxSgv2Oo5dsgYMdDY7YOddTh0HLtjCd2xhO5UQjZ8eDbsl34mc5L__7r8C05VhKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bhat, Aamir Y ; Bashir, Aejaz Ul ; Jain, Priya ; Bhat, Mohsin A ; Ingole, Pravin Popinand</creator><creatorcontrib>Bhat, Aamir Y ; Bashir, Aejaz Ul ; Jain, Priya ; Bhat, Mohsin A ; Ingole, Pravin Popinand</creatorcontrib><description>Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N
adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O
) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O
in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe
O
) supported over N-doped carbon (CuFe
O
@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH
formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe
O
@NC electrocatalyst.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403319</identifier><identifier>PMID: 39082204</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (45), p.e2403319</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3</cites><orcidid>0000-0002-9755-4477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39082204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhat, Aamir Y</creatorcontrib><creatorcontrib>Bashir, Aejaz Ul</creatorcontrib><creatorcontrib>Jain, Priya</creatorcontrib><creatorcontrib>Bhat, Mohsin A</creatorcontrib><creatorcontrib>Ingole, Pravin Popinand</creatorcontrib><title>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N
adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O
) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O
in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe
O
) supported over N-doped carbon (CuFe
O
@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH
formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe
O
@NC electrocatalyst.</description><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kd1u1DAQhS0EoqVwyyWaF8gy_tn83LFEbUFquxIs3EZOPGmNEntlOy37bLwcXhX2akaac44-zWHsPccVRxQf4zxNK4FCoZS8ecHOecllUdaieXnaOZ6xNzH-QpRcqOo1O5MN1kKgOmd_frigH2my7h7SA8FmSPaR4LtNFME7uKXo9z74JUK7XBEI2IKCT3dFq0Of761OejrEFOHJpgfY9Isz2iXY_j7ck4OfetBusDlLOwO3RfZB612iLBl9gM_ex0QG7mwK_mj4RmbJCDl55590MHA50ZBv8eAyXrQZaoTNPHtn9Vv2atRTpHf_5gXbXV3u2i_Fzfb6a7u5KYZSqKKmaiixUuumVlW_HntuKmkErblENFhhrYemHtalMkZLUoKUplogKtIcxSgv2Oo5dsgYMdDY7YOddTh0HLtjCd2xhO5UQjZ8eDbsl34mc5L__7r8C05VhKo</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Bhat, Aamir Y</creator><creator>Bashir, Aejaz Ul</creator><creator>Jain, Priya</creator><creator>Bhat, Mohsin A</creator><creator>Ingole, Pravin Popinand</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9755-4477</orcidid></search><sort><creationdate>202411</creationdate><title>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</title><author>Bhat, Aamir Y ; Bashir, Aejaz Ul ; Jain, Priya ; Bhat, Mohsin A ; Ingole, Pravin Popinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, Aamir Y</creatorcontrib><creatorcontrib>Bashir, Aejaz Ul</creatorcontrib><creatorcontrib>Jain, Priya</creatorcontrib><creatorcontrib>Bhat, Mohsin A</creatorcontrib><creatorcontrib>Ingole, Pravin Popinand</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, Aamir Y</au><au>Bashir, Aejaz Ul</au><au>Jain, Priya</au><au>Bhat, Mohsin A</au><au>Ingole, Pravin Popinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>45</issue><spage>e2403319</spage><pages>e2403319-</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N
adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (O
) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and O
in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe
O
) supported over N-doped carbon (CuFe
O
@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH
formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe
O
@NC electrocatalyst.</abstract><cop>Germany</cop><pmid>39082204</pmid><doi>10.1002/smll.202403319</doi><orcidid>https://orcid.org/0000-0002-9755-4477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.20 (45), p.e2403319 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_crossref_primary_10_1002_smll_202403319 |
source | Wiley-Blackwell Read & Publish Collection |
title | Unraveling the Active Sites on Mesoporous CuFe 2 O 4 @N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Active%20Sites%20on%20Mesoporous%20CuFe%202%20O%204%20@N-Carbon%20Catalysts%20with%20Abundant%20Oxygen%20Vacancies%20and%20M-N-C%20Content%20for%20Boosted%20Nitrogen%20Reduction%20Toward%20Electrosynthesis%20of%20Ammonia&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Bhat,%20Aamir%20Y&rft.date=2024-11&rft.volume=20&rft.issue=45&rft.spage=e2403319&rft.pages=e2403319-&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403319&rft_dat=%3Cpubmed_cross%3E39082204%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624-8e7c607459847b5fb1d73d2e51300d0708ac98c564dda3e42e4ae82004ea102f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39082204&rfr_iscdi=true |