Loading…

Deep Learning‐Assisted Electronic Skin System Capable of Capturing Spatiotemporal and Mechanical Features of Social Touch to Enhance Human–Robot Emotion Recognition

In human interactions, social touch communication is widely used to convey emotions, emphasizing its critical role in advancing human–robot interactions by enabling robots to understand and respond to human emotions, thereby significantly enhancing their service capabilities. However, the challenge...

Full description

Saved in:
Bibliographic Details
Published in:SmartMat (Beijing, China) China), 2025-02, Vol.6 (1)
Main Authors: Huang, Jinrong, Sun, Yuqiong, Jiang, Yongchang, Li, Jie‐an, Sun, Xidi, Cao, Xun, Zheng, Youdou, Pan, Lijia, Shi, Yi
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c154t-3c2a095b82af066ce008726354607598b2d6a9520464d3a9ac867d37faf041953
container_end_page
container_issue 1
container_start_page
container_title SmartMat (Beijing, China)
container_volume 6
creator Huang, Jinrong
Sun, Yuqiong
Jiang, Yongchang
Li, Jie‐an
Sun, Xidi
Cao, Xun
Zheng, Youdou
Pan, Lijia
Shi, Yi
description In human interactions, social touch communication is widely used to convey emotions, emphasizing its critical role in advancing human–robot interactions by enabling robots to understand and respond to human emotions, thereby significantly enhancing their service capabilities. However, the challenge is to dynamically capture social touch with sufficient spatiotemporal and mechanical resolution for deep haptic data analysis. This study presents a robotic system with flexible electronic skin and a high‐frequency signal circuit, utilizing deep neural networks to recognize social touch emotions. The electronic skin, made from double cross‐linked ionogels and microstructured arrays, has a low force detection threshold (8 Pa) and a wide perception range (0–150 kPa), enhancing the mechanical resolution of touch signals. By incorporating a high‐speed readout circuit capable of capturing spatiotemporal features of social touch gesture information at 30 Hz, the system facilitates precise analysis of touch interactions. A 3D convolutional neural network with a Squeeze‐and‐Excitation Attention module achieves 87.12% accuracy in recognizing social touch gestures, improving the understanding of emotions conveyed through touch. The effectiveness of the system is validated through interactive demonstrations with robotic dogs and humanoid robots, demonstrating its potential to enhance the emotional intelligence of robots.
doi_str_mv 10.1002/smm2.1325
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smm2_1325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_smm2_1325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-3c2a095b82af066ce008726354607598b2d6a9520464d3a9ac867d37faf041953</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEhV0wQ28ZZHin9hJllVJKVIRUlMkdpHjOK0hsSM7XXTXIyBxCc7Vk-AIVvNm5ntv8QC4w2iGESIPvuvIDFPCLsCE8DSNUpy9XwadcB6ljLBrMPX-AwWWYZxkdAJ-HpXq4VoJZ7TZnU9fc--1H1QN81bJwVmjJSw-tYHFMZw7uBC9qFoFbTPK4eCCDRa9GLQN79460UJhavii5F4Ec1iXSgRO-dFTWKnDaWsPcg8HC3MTKKng6tAJcz59b2xlB5h3NuQZuFHS7owe9S24akTr1fR_3oC3Zb5drKL169PzYr6OJGbxEFFJBMpYlRLRIM6lQihNCKcs5ihhWVqRmouMERTzuKYiEzLlSU2TJuAxzhi9Afd_udJZ751qyt7pTrhjiVE5tlyOLZdjy_QXc0J0HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning‐Assisted Electronic Skin System Capable of Capturing Spatiotemporal and Mechanical Features of Social Touch to Enhance Human–Robot Emotion Recognition</title><source>Publicly Available Content Database</source><source>Wiley-Blackwell Open Access Titles (Open Access)</source><creator>Huang, Jinrong ; Sun, Yuqiong ; Jiang, Yongchang ; Li, Jie‐an ; Sun, Xidi ; Cao, Xun ; Zheng, Youdou ; Pan, Lijia ; Shi, Yi</creator><creatorcontrib>Huang, Jinrong ; Sun, Yuqiong ; Jiang, Yongchang ; Li, Jie‐an ; Sun, Xidi ; Cao, Xun ; Zheng, Youdou ; Pan, Lijia ; Shi, Yi</creatorcontrib><description>In human interactions, social touch communication is widely used to convey emotions, emphasizing its critical role in advancing human–robot interactions by enabling robots to understand and respond to human emotions, thereby significantly enhancing their service capabilities. However, the challenge is to dynamically capture social touch with sufficient spatiotemporal and mechanical resolution for deep haptic data analysis. This study presents a robotic system with flexible electronic skin and a high‐frequency signal circuit, utilizing deep neural networks to recognize social touch emotions. The electronic skin, made from double cross‐linked ionogels and microstructured arrays, has a low force detection threshold (8 Pa) and a wide perception range (0–150 kPa), enhancing the mechanical resolution of touch signals. By incorporating a high‐speed readout circuit capable of capturing spatiotemporal features of social touch gesture information at 30 Hz, the system facilitates precise analysis of touch interactions. A 3D convolutional neural network with a Squeeze‐and‐Excitation Attention module achieves 87.12% accuracy in recognizing social touch gestures, improving the understanding of emotions conveyed through touch. The effectiveness of the system is validated through interactive demonstrations with robotic dogs and humanoid robots, demonstrating its potential to enhance the emotional intelligence of robots.</description><identifier>ISSN: 2766-8525</identifier><identifier>EISSN: 2688-819X</identifier><identifier>DOI: 10.1002/smm2.1325</identifier><language>eng</language><ispartof>SmartMat (Beijing, China), 2025-02, Vol.6 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-3c2a095b82af066ce008726354607598b2d6a9520464d3a9ac867d37faf041953</cites><orcidid>0000-0003-1370-2987 ; 0000-0002-8917-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Jinrong</creatorcontrib><creatorcontrib>Sun, Yuqiong</creatorcontrib><creatorcontrib>Jiang, Yongchang</creatorcontrib><creatorcontrib>Li, Jie‐an</creatorcontrib><creatorcontrib>Sun, Xidi</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Zheng, Youdou</creatorcontrib><creatorcontrib>Pan, Lijia</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><title>Deep Learning‐Assisted Electronic Skin System Capable of Capturing Spatiotemporal and Mechanical Features of Social Touch to Enhance Human–Robot Emotion Recognition</title><title>SmartMat (Beijing, China)</title><description>In human interactions, social touch communication is widely used to convey emotions, emphasizing its critical role in advancing human–robot interactions by enabling robots to understand and respond to human emotions, thereby significantly enhancing their service capabilities. However, the challenge is to dynamically capture social touch with sufficient spatiotemporal and mechanical resolution for deep haptic data analysis. This study presents a robotic system with flexible electronic skin and a high‐frequency signal circuit, utilizing deep neural networks to recognize social touch emotions. The electronic skin, made from double cross‐linked ionogels and microstructured arrays, has a low force detection threshold (8 Pa) and a wide perception range (0–150 kPa), enhancing the mechanical resolution of touch signals. By incorporating a high‐speed readout circuit capable of capturing spatiotemporal features of social touch gesture information at 30 Hz, the system facilitates precise analysis of touch interactions. A 3D convolutional neural network with a Squeeze‐and‐Excitation Attention module achieves 87.12% accuracy in recognizing social touch gestures, improving the understanding of emotions conveyed through touch. The effectiveness of the system is validated through interactive demonstrations with robotic dogs and humanoid robots, demonstrating its potential to enhance the emotional intelligence of robots.</description><issn>2766-8525</issn><issn>2688-819X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEhV0wQ28ZZHin9hJllVJKVIRUlMkdpHjOK0hsSM7XXTXIyBxCc7Vk-AIVvNm5ntv8QC4w2iGESIPvuvIDFPCLsCE8DSNUpy9XwadcB6ljLBrMPX-AwWWYZxkdAJ-HpXq4VoJZ7TZnU9fc--1H1QN81bJwVmjJSw-tYHFMZw7uBC9qFoFbTPK4eCCDRa9GLQN79460UJhavii5F4Ec1iXSgRO-dFTWKnDaWsPcg8HC3MTKKng6tAJcz59b2xlB5h3NuQZuFHS7owe9S24akTr1fR_3oC3Zb5drKL169PzYr6OJGbxEFFJBMpYlRLRIM6lQihNCKcs5ihhWVqRmouMERTzuKYiEzLlSU2TJuAxzhi9Afd_udJZ751qyt7pTrhjiVE5tlyOLZdjy_QXc0J0HQ</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Huang, Jinrong</creator><creator>Sun, Yuqiong</creator><creator>Jiang, Yongchang</creator><creator>Li, Jie‐an</creator><creator>Sun, Xidi</creator><creator>Cao, Xun</creator><creator>Zheng, Youdou</creator><creator>Pan, Lijia</creator><creator>Shi, Yi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1370-2987</orcidid><orcidid>https://orcid.org/0000-0002-8917-7843</orcidid></search><sort><creationdate>202502</creationdate><title>Deep Learning‐Assisted Electronic Skin System Capable of Capturing Spatiotemporal and Mechanical Features of Social Touch to Enhance Human–Robot Emotion Recognition</title><author>Huang, Jinrong ; Sun, Yuqiong ; Jiang, Yongchang ; Li, Jie‐an ; Sun, Xidi ; Cao, Xun ; Zheng, Youdou ; Pan, Lijia ; Shi, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-3c2a095b82af066ce008726354607598b2d6a9520464d3a9ac867d37faf041953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jinrong</creatorcontrib><creatorcontrib>Sun, Yuqiong</creatorcontrib><creatorcontrib>Jiang, Yongchang</creatorcontrib><creatorcontrib>Li, Jie‐an</creatorcontrib><creatorcontrib>Sun, Xidi</creatorcontrib><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Zheng, Youdou</creatorcontrib><creatorcontrib>Pan, Lijia</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>SmartMat (Beijing, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jinrong</au><au>Sun, Yuqiong</au><au>Jiang, Yongchang</au><au>Li, Jie‐an</au><au>Sun, Xidi</au><au>Cao, Xun</au><au>Zheng, Youdou</au><au>Pan, Lijia</au><au>Shi, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning‐Assisted Electronic Skin System Capable of Capturing Spatiotemporal and Mechanical Features of Social Touch to Enhance Human–Robot Emotion Recognition</atitle><jtitle>SmartMat (Beijing, China)</jtitle><date>2025-02</date><risdate>2025</risdate><volume>6</volume><issue>1</issue><issn>2766-8525</issn><eissn>2688-819X</eissn><abstract>In human interactions, social touch communication is widely used to convey emotions, emphasizing its critical role in advancing human–robot interactions by enabling robots to understand and respond to human emotions, thereby significantly enhancing their service capabilities. However, the challenge is to dynamically capture social touch with sufficient spatiotemporal and mechanical resolution for deep haptic data analysis. This study presents a robotic system with flexible electronic skin and a high‐frequency signal circuit, utilizing deep neural networks to recognize social touch emotions. The electronic skin, made from double cross‐linked ionogels and microstructured arrays, has a low force detection threshold (8 Pa) and a wide perception range (0–150 kPa), enhancing the mechanical resolution of touch signals. By incorporating a high‐speed readout circuit capable of capturing spatiotemporal features of social touch gesture information at 30 Hz, the system facilitates precise analysis of touch interactions. A 3D convolutional neural network with a Squeeze‐and‐Excitation Attention module achieves 87.12% accuracy in recognizing social touch gestures, improving the understanding of emotions conveyed through touch. The effectiveness of the system is validated through interactive demonstrations with robotic dogs and humanoid robots, demonstrating its potential to enhance the emotional intelligence of robots.</abstract><doi>10.1002/smm2.1325</doi><orcidid>https://orcid.org/0000-0003-1370-2987</orcidid><orcidid>https://orcid.org/0000-0002-8917-7843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2766-8525
ispartof SmartMat (Beijing, China), 2025-02, Vol.6 (1)
issn 2766-8525
2688-819X
language eng
recordid cdi_crossref_primary_10_1002_smm2_1325
source Publicly Available Content Database; Wiley-Blackwell Open Access Titles (Open Access)
title Deep Learning‐Assisted Electronic Skin System Capable of Capturing Spatiotemporal and Mechanical Features of Social Touch to Enhance Human–Robot Emotion Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%E2%80%90Assisted%20Electronic%20Skin%20System%20Capable%20of%20Capturing%20Spatiotemporal%20and%20Mechanical%20Features%20of%20Social%20Touch%20to%20Enhance%20Human%E2%80%93Robot%20Emotion%20Recognition&rft.jtitle=SmartMat%20(Beijing,%20China)&rft.au=Huang,%20Jinrong&rft.date=2025-02&rft.volume=6&rft.issue=1&rft.issn=2766-8525&rft.eissn=2688-819X&rft_id=info:doi/10.1002/smm2.1325&rft_dat=%3Ccrossref%3E10_1002_smm2_1325%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c154t-3c2a095b82af066ce008726354607598b2d6a9520464d3a9ac867d37faf041953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true