Loading…

Mechanical Polyprotein Assembly Using Sfp and Sortase‐Mediated Domain Oligomerization for Single‐Molecule Studies

Single‐molecule force spectroscopy (SMFS) with the atomic force microscope (AFM) provides remarkable details on the energy landscapes governing protein (un)folding and intermolecular complex dissociation. In such experiments, multidomain polyproteins consisting of multiple copies of independently fo...

Full description

Saved in:
Bibliographic Details
Published in:Small methods 2018-06, Vol.2 (6), p.n/a
Main Authors: Liu, Haipei, Ta, Duy Tien, Nash, Michael A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3
cites cdi_FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3
container_end_page n/a
container_issue 6
container_start_page
container_title Small methods
container_volume 2
creator Liu, Haipei
Ta, Duy Tien
Nash, Michael A.
description Single‐molecule force spectroscopy (SMFS) with the atomic force microscope (AFM) provides remarkable details on the energy landscapes governing protein (un)folding and intermolecular complex dissociation. In such experiments, multidomain polyproteins consisting of multiple copies of independently foldable domains provide internal controls identifiable by characteristic contour length increments, unfolding forces, and/or unfolding substeps. Here, a new approach to polyprotein synthesis is presented relying on posttranslational enzyme‐mediated oligomerization of domains. Mutant variants of immunoglobulin 27 (I27) and a bacterial cellulose binding module (CBM) fused to an Ig‐like X‐module (XMod), and a mechanostable receptor called Dockerin (Doc) are produced with complementary peptide tags. By utilizing 4′‐phosphopantetheinyl transferase and Sortase A, the system enables I27‐domain oligomerization into polyproteins of varying lengths followed by C‐terminal capping with mechanostable Doc. The number of oligomerized domains per molecule, the unfolding forces, and the complex rupture forces of posttranslationally assembled polyproteins are characterized using >40 h automated AFM–SMFS with a Cohesin (Coh)‐modified cantilever. Use of the Coh–Doc interaction to unfold polyproteins provides a high yield of ≈ 3800 specific single‐molecule interaction curves. This approach is advantageous for assembly of polyproteins from domains that lack proper folding or are insoluble in a polyprotein format. Oligomeric polyproteins are used for single‐molecule biomechanical experiments to characterize protein‐folding energy landscapes. A new method is presented for posttranslational assembly of polyproteins, which relies on two enzymes to achieve site‐specific surface attachment, multidomain oligomerization, and installation of a mechanostable receptor for specific protein pickup and stretching under force, resulting in high‐quality single‐molecule unfolding datasets.
doi_str_mv 10.1002/smtd.201800039
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_smtd_201800039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SMTD201800039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EElXpyuwXSPFP08Rj1fIntSpS2jly4uti5MSVnQqFiUfoM_IkJBQBG9N3h3PucBC6pmRMCWE3oWrUmBGaEkK4OEMDxqfTSExJev7nvkSjEF46pCN5zOgAHVZQPsvalNLiJ2fbvXcNmBrPQoCqsC3eBlPvcKb3WNYKZ843MsDH-3EFysgGFF64SnbC2pqdq8CbN9kYV2PtPM461X7BzkJ5sICz5qAMhCt0oaUNMPreIdre3W7mD9Fyff84ny2jkjMhItAsSahiUikRE0knAlKAuFBJLLRSkHJSxCQuRAq0X05UUXBKJZ9MUp2UfIjGp7-ldyF40Pnem0r6Nqck77vlfbf8p1sniJPwaiy0_9B5ttosft1PWk12cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical Polyprotein Assembly Using Sfp and Sortase‐Mediated Domain Oligomerization for Single‐Molecule Studies</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Haipei ; Ta, Duy Tien ; Nash, Michael A.</creator><creatorcontrib>Liu, Haipei ; Ta, Duy Tien ; Nash, Michael A.</creatorcontrib><description>Single‐molecule force spectroscopy (SMFS) with the atomic force microscope (AFM) provides remarkable details on the energy landscapes governing protein (un)folding and intermolecular complex dissociation. In such experiments, multidomain polyproteins consisting of multiple copies of independently foldable domains provide internal controls identifiable by characteristic contour length increments, unfolding forces, and/or unfolding substeps. Here, a new approach to polyprotein synthesis is presented relying on posttranslational enzyme‐mediated oligomerization of domains. Mutant variants of immunoglobulin 27 (I27) and a bacterial cellulose binding module (CBM) fused to an Ig‐like X‐module (XMod), and a mechanostable receptor called Dockerin (Doc) are produced with complementary peptide tags. By utilizing 4′‐phosphopantetheinyl transferase and Sortase A, the system enables I27‐domain oligomerization into polyproteins of varying lengths followed by C‐terminal capping with mechanostable Doc. The number of oligomerized domains per molecule, the unfolding forces, and the complex rupture forces of posttranslationally assembled polyproteins are characterized using &gt;40 h automated AFM–SMFS with a Cohesin (Coh)‐modified cantilever. Use of the Coh–Doc interaction to unfold polyproteins provides a high yield of ≈ 3800 specific single‐molecule interaction curves. This approach is advantageous for assembly of polyproteins from domains that lack proper folding or are insoluble in a polyprotein format. Oligomeric polyproteins are used for single‐molecule biomechanical experiments to characterize protein‐folding energy landscapes. A new method is presented for posttranslational assembly of polyproteins, which relies on two enzymes to achieve site‐specific surface attachment, multidomain oligomerization, and installation of a mechanostable receptor for specific protein pickup and stretching under force, resulting in high‐quality single‐molecule unfolding datasets.</description><identifier>ISSN: 2366-9608</identifier><identifier>EISSN: 2366-9608</identifier><identifier>DOI: 10.1002/smtd.201800039</identifier><language>eng</language><subject>atomic force microscopy ; cohesion and dockerin ; polyproteins ; protein folding ; single‐molecule force spectroscopy ; sortase</subject><ispartof>Small methods, 2018-06, Vol.2 (6), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3</citedby><cites>FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3</cites><orcidid>0000-0002-3901-638X ; 0000-0003-3842-1567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Haipei</creatorcontrib><creatorcontrib>Ta, Duy Tien</creatorcontrib><creatorcontrib>Nash, Michael A.</creatorcontrib><title>Mechanical Polyprotein Assembly Using Sfp and Sortase‐Mediated Domain Oligomerization for Single‐Molecule Studies</title><title>Small methods</title><description>Single‐molecule force spectroscopy (SMFS) with the atomic force microscope (AFM) provides remarkable details on the energy landscapes governing protein (un)folding and intermolecular complex dissociation. In such experiments, multidomain polyproteins consisting of multiple copies of independently foldable domains provide internal controls identifiable by characteristic contour length increments, unfolding forces, and/or unfolding substeps. Here, a new approach to polyprotein synthesis is presented relying on posttranslational enzyme‐mediated oligomerization of domains. Mutant variants of immunoglobulin 27 (I27) and a bacterial cellulose binding module (CBM) fused to an Ig‐like X‐module (XMod), and a mechanostable receptor called Dockerin (Doc) are produced with complementary peptide tags. By utilizing 4′‐phosphopantetheinyl transferase and Sortase A, the system enables I27‐domain oligomerization into polyproteins of varying lengths followed by C‐terminal capping with mechanostable Doc. The number of oligomerized domains per molecule, the unfolding forces, and the complex rupture forces of posttranslationally assembled polyproteins are characterized using &gt;40 h automated AFM–SMFS with a Cohesin (Coh)‐modified cantilever. Use of the Coh–Doc interaction to unfold polyproteins provides a high yield of ≈ 3800 specific single‐molecule interaction curves. This approach is advantageous for assembly of polyproteins from domains that lack proper folding or are insoluble in a polyprotein format. Oligomeric polyproteins are used for single‐molecule biomechanical experiments to characterize protein‐folding energy landscapes. A new method is presented for posttranslational assembly of polyproteins, which relies on two enzymes to achieve site‐specific surface attachment, multidomain oligomerization, and installation of a mechanostable receptor for specific protein pickup and stretching under force, resulting in high‐quality single‐molecule unfolding datasets.</description><subject>atomic force microscopy</subject><subject>cohesion and dockerin</subject><subject>polyproteins</subject><subject>protein folding</subject><subject>single‐molecule force spectroscopy</subject><subject>sortase</subject><issn>2366-9608</issn><issn>2366-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EElXpyuwXSPFP08Rj1fIntSpS2jly4uti5MSVnQqFiUfoM_IkJBQBG9N3h3PucBC6pmRMCWE3oWrUmBGaEkK4OEMDxqfTSExJev7nvkSjEF46pCN5zOgAHVZQPsvalNLiJ2fbvXcNmBrPQoCqsC3eBlPvcKb3WNYKZ843MsDH-3EFysgGFF64SnbC2pqdq8CbN9kYV2PtPM461X7BzkJ5sICz5qAMhCt0oaUNMPreIdre3W7mD9Fyff84ny2jkjMhItAsSahiUikRE0knAlKAuFBJLLRSkHJSxCQuRAq0X05UUXBKJZ9MUp2UfIjGp7-ldyF40Pnem0r6Nqck77vlfbf8p1sniJPwaiy0_9B5ttosft1PWk12cg</recordid><startdate>20180612</startdate><enddate>20180612</enddate><creator>Liu, Haipei</creator><creator>Ta, Duy Tien</creator><creator>Nash, Michael A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3901-638X</orcidid><orcidid>https://orcid.org/0000-0003-3842-1567</orcidid></search><sort><creationdate>20180612</creationdate><title>Mechanical Polyprotein Assembly Using Sfp and Sortase‐Mediated Domain Oligomerization for Single‐Molecule Studies</title><author>Liu, Haipei ; Ta, Duy Tien ; Nash, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>atomic force microscopy</topic><topic>cohesion and dockerin</topic><topic>polyproteins</topic><topic>protein folding</topic><topic>single‐molecule force spectroscopy</topic><topic>sortase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haipei</creatorcontrib><creatorcontrib>Ta, Duy Tien</creatorcontrib><creatorcontrib>Nash, Michael A.</creatorcontrib><collection>CrossRef</collection><jtitle>Small methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haipei</au><au>Ta, Duy Tien</au><au>Nash, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Polyprotein Assembly Using Sfp and Sortase‐Mediated Domain Oligomerization for Single‐Molecule Studies</atitle><jtitle>Small methods</jtitle><date>2018-06-12</date><risdate>2018</risdate><volume>2</volume><issue>6</issue><epage>n/a</epage><issn>2366-9608</issn><eissn>2366-9608</eissn><abstract>Single‐molecule force spectroscopy (SMFS) with the atomic force microscope (AFM) provides remarkable details on the energy landscapes governing protein (un)folding and intermolecular complex dissociation. In such experiments, multidomain polyproteins consisting of multiple copies of independently foldable domains provide internal controls identifiable by characteristic contour length increments, unfolding forces, and/or unfolding substeps. Here, a new approach to polyprotein synthesis is presented relying on posttranslational enzyme‐mediated oligomerization of domains. Mutant variants of immunoglobulin 27 (I27) and a bacterial cellulose binding module (CBM) fused to an Ig‐like X‐module (XMod), and a mechanostable receptor called Dockerin (Doc) are produced with complementary peptide tags. By utilizing 4′‐phosphopantetheinyl transferase and Sortase A, the system enables I27‐domain oligomerization into polyproteins of varying lengths followed by C‐terminal capping with mechanostable Doc. The number of oligomerized domains per molecule, the unfolding forces, and the complex rupture forces of posttranslationally assembled polyproteins are characterized using &gt;40 h automated AFM–SMFS with a Cohesin (Coh)‐modified cantilever. Use of the Coh–Doc interaction to unfold polyproteins provides a high yield of ≈ 3800 specific single‐molecule interaction curves. This approach is advantageous for assembly of polyproteins from domains that lack proper folding or are insoluble in a polyprotein format. Oligomeric polyproteins are used for single‐molecule biomechanical experiments to characterize protein‐folding energy landscapes. A new method is presented for posttranslational assembly of polyproteins, which relies on two enzymes to achieve site‐specific surface attachment, multidomain oligomerization, and installation of a mechanostable receptor for specific protein pickup and stretching under force, resulting in high‐quality single‐molecule unfolding datasets.</abstract><doi>10.1002/smtd.201800039</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3901-638X</orcidid><orcidid>https://orcid.org/0000-0003-3842-1567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2366-9608
ispartof Small methods, 2018-06, Vol.2 (6), p.n/a
issn 2366-9608
2366-9608
language eng
recordid cdi_crossref_primary_10_1002_smtd_201800039
source Wiley-Blackwell Read & Publish Collection
subjects atomic force microscopy
cohesion and dockerin
polyproteins
protein folding
single‐molecule force spectroscopy
sortase
title Mechanical Polyprotein Assembly Using Sfp and Sortase‐Mediated Domain Oligomerization for Single‐Molecule Studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Polyprotein%20Assembly%20Using%20Sfp%20and%20Sortase%E2%80%90Mediated%20Domain%20Oligomerization%20for%20Single%E2%80%90Molecule%20Studies&rft.jtitle=Small%20methods&rft.au=Liu,%20Haipei&rft.date=2018-06-12&rft.volume=2&rft.issue=6&rft.epage=n/a&rft.issn=2366-9608&rft.eissn=2366-9608&rft_id=info:doi/10.1002/smtd.201800039&rft_dat=%3Cwiley_cross%3ESMTD201800039%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3299-ef2771d2add950a149e8ee5bd759fdde830b505b98e1505b30dbb311a3448f7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true