Loading…
Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization
Herein, a novel strategy is introduced to reduce the consumption of scarce materials in silicon heterojunction solar cells by combining approaches for Ag replacement in the metallization and a reduction of the indium tin oxide layer thickness: a Ti layer deposited by physical vapor deposition serves...
Saved in:
Published in: | Solar RRL 2023-10, Vol.7 (19) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c234t-85809377955c59e409366be77cad387504cebbd381992103f6d0d229ac181f543 |
container_end_page | |
container_issue | 19 |
container_start_page | |
container_title | Solar RRL |
container_volume | 7 |
creator | Jakob, Leonie Tutsch, Leonard Hatt, Thibaud Westraadt, Johan Ngongo, Sinoyolo Glatthaar, Markus Bivour, Martin Bartsch, Jonas |
description | Herein, a novel strategy is introduced to reduce the consumption of scarce materials in silicon heterojunction solar cells by combining approaches for Ag replacement in the metallization and a reduction of the indium tin oxide layer thickness: a Ti layer deposited by physical vapor deposition serves both as the contact layer of a copper‐based metallization and after electrochemical oxidation as capping layer enabling the use of a thinner transparent conductive oxide. Further, the TiO
x
layer can build an encapsulation layer. While oxygen evolution and metal dissolution are found to be critical side reactions, a nonaqueous electrolyte is found in which these reactions can be avoided. The application on silicon heterojunction solar cells shows promising first results, exhibiting a short circuit current density of 35 mA cm
−
2
and a cell efficiency of close to 21% despite nonoptimized layer thicknesses. |
doi_str_mv | 10.1002/solr.202300418 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_solr_202300418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_solr_202300418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-85809377955c59e409366be77cad387504cebbd381992103f6d0d229ac181f543</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOOaunvMPdOZXm-Q4inPCZIdN8Fay9FvISBtJ2uH8621xiKf3Hrz3Dh-EHilZUkLYUwo-LhlhnBBB1Q2aMV7IjGr1cfvP36NFSicyDoSQqqAz5N8G37tm6GzvQmc8PrjedG5o8e7L1YC35gIxYdfhvfPOhg5voIcYTtcF3gdvIi7B-4TXIbZQ47MzeA8exsIZ8KoLtfs2U_kB3TXGJ1hcdY7e18-HcpNtdy-v5WqbWcZFn6lcEc2l1Hlucw1iDEVxBCmtqbmSOREWjsfRUq0ZJbwpalIzpo2lija54HO0_P21MaQUoak-o2tNvFSUVBOuasJV_eHiPyl1X2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jakob, Leonie ; Tutsch, Leonard ; Hatt, Thibaud ; Westraadt, Johan ; Ngongo, Sinoyolo ; Glatthaar, Markus ; Bivour, Martin ; Bartsch, Jonas</creator><creatorcontrib>Jakob, Leonie ; Tutsch, Leonard ; Hatt, Thibaud ; Westraadt, Johan ; Ngongo, Sinoyolo ; Glatthaar, Markus ; Bivour, Martin ; Bartsch, Jonas</creatorcontrib><description>Herein, a novel strategy is introduced to reduce the consumption of scarce materials in silicon heterojunction solar cells by combining approaches for Ag replacement in the metallization and a reduction of the indium tin oxide layer thickness: a Ti layer deposited by physical vapor deposition serves both as the contact layer of a copper‐based metallization and after electrochemical oxidation as capping layer enabling the use of a thinner transparent conductive oxide. Further, the TiO
x
layer can build an encapsulation layer. While oxygen evolution and metal dissolution are found to be critical side reactions, a nonaqueous electrolyte is found in which these reactions can be avoided. The application on silicon heterojunction solar cells shows promising first results, exhibiting a short circuit current density of 35 mA cm
−
2
and a cell efficiency of close to 21% despite nonoptimized layer thicknesses.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202300418</identifier><language>eng</language><ispartof>Solar RRL, 2023-10, Vol.7 (19)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-85809377955c59e409366be77cad387504cebbd381992103f6d0d229ac181f543</cites><orcidid>0000-0001-8311-6663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jakob, Leonie</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Hatt, Thibaud</creatorcontrib><creatorcontrib>Westraadt, Johan</creatorcontrib><creatorcontrib>Ngongo, Sinoyolo</creatorcontrib><creatorcontrib>Glatthaar, Markus</creatorcontrib><creatorcontrib>Bivour, Martin</creatorcontrib><creatorcontrib>Bartsch, Jonas</creatorcontrib><title>Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization</title><title>Solar RRL</title><description>Herein, a novel strategy is introduced to reduce the consumption of scarce materials in silicon heterojunction solar cells by combining approaches for Ag replacement in the metallization and a reduction of the indium tin oxide layer thickness: a Ti layer deposited by physical vapor deposition serves both as the contact layer of a copper‐based metallization and after electrochemical oxidation as capping layer enabling the use of a thinner transparent conductive oxide. Further, the TiO
x
layer can build an encapsulation layer. While oxygen evolution and metal dissolution are found to be critical side reactions, a nonaqueous electrolyte is found in which these reactions can be avoided. The application on silicon heterojunction solar cells shows promising first results, exhibiting a short circuit current density of 35 mA cm
−
2
and a cell efficiency of close to 21% despite nonoptimized layer thicknesses.</description><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOOaunvMPdOZXm-Q4inPCZIdN8Fay9FvISBtJ2uH8621xiKf3Hrz3Dh-EHilZUkLYUwo-LhlhnBBB1Q2aMV7IjGr1cfvP36NFSicyDoSQqqAz5N8G37tm6GzvQmc8PrjedG5o8e7L1YC35gIxYdfhvfPOhg5voIcYTtcF3gdvIi7B-4TXIbZQ47MzeA8exsIZ8KoLtfs2U_kB3TXGJ1hcdY7e18-HcpNtdy-v5WqbWcZFn6lcEc2l1Hlucw1iDEVxBCmtqbmSOREWjsfRUq0ZJbwpalIzpo2lija54HO0_P21MaQUoak-o2tNvFSUVBOuasJV_eHiPyl1X2U</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Jakob, Leonie</creator><creator>Tutsch, Leonard</creator><creator>Hatt, Thibaud</creator><creator>Westraadt, Johan</creator><creator>Ngongo, Sinoyolo</creator><creator>Glatthaar, Markus</creator><creator>Bivour, Martin</creator><creator>Bartsch, Jonas</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8311-6663</orcidid></search><sort><creationdate>202310</creationdate><title>Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization</title><author>Jakob, Leonie ; Tutsch, Leonard ; Hatt, Thibaud ; Westraadt, Johan ; Ngongo, Sinoyolo ; Glatthaar, Markus ; Bivour, Martin ; Bartsch, Jonas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-85809377955c59e409366be77cad387504cebbd381992103f6d0d229ac181f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakob, Leonie</creatorcontrib><creatorcontrib>Tutsch, Leonard</creatorcontrib><creatorcontrib>Hatt, Thibaud</creatorcontrib><creatorcontrib>Westraadt, Johan</creatorcontrib><creatorcontrib>Ngongo, Sinoyolo</creatorcontrib><creatorcontrib>Glatthaar, Markus</creatorcontrib><creatorcontrib>Bivour, Martin</creatorcontrib><creatorcontrib>Bartsch, Jonas</creatorcontrib><collection>CrossRef</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakob, Leonie</au><au>Tutsch, Leonard</au><au>Hatt, Thibaud</au><au>Westraadt, Johan</au><au>Ngongo, Sinoyolo</au><au>Glatthaar, Markus</au><au>Bivour, Martin</au><au>Bartsch, Jonas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization</atitle><jtitle>Solar RRL</jtitle><date>2023-10</date><risdate>2023</risdate><volume>7</volume><issue>19</issue><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Herein, a novel strategy is introduced to reduce the consumption of scarce materials in silicon heterojunction solar cells by combining approaches for Ag replacement in the metallization and a reduction of the indium tin oxide layer thickness: a Ti layer deposited by physical vapor deposition serves both as the contact layer of a copper‐based metallization and after electrochemical oxidation as capping layer enabling the use of a thinner transparent conductive oxide. Further, the TiO
x
layer can build an encapsulation layer. While oxygen evolution and metal dissolution are found to be critical side reactions, a nonaqueous electrolyte is found in which these reactions can be avoided. The application on silicon heterojunction solar cells shows promising first results, exhibiting a short circuit current density of 35 mA cm
−
2
and a cell efficiency of close to 21% despite nonoptimized layer thicknesses.</abstract><doi>10.1002/solr.202300418</doi><orcidid>https://orcid.org/0000-0001-8311-6663</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2367-198X |
ispartof | Solar RRL, 2023-10, Vol.7 (19) |
issn | 2367-198X 2367-198X |
language | eng |
recordid | cdi_crossref_primary_10_1002_solr_202300418 |
source | Wiley-Blackwell Read & Publish Collection |
title | Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Titanium%20Oxide%20Layers%20in%20Silicon%20Heterojunction%20Solar%20Cells%20Formed%20via%20Selective%20Anodization&rft.jtitle=Solar%20RRL&rft.au=Jakob,%20Leonie&rft.date=2023-10&rft.volume=7&rft.issue=19&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202300418&rft_dat=%3Ccrossref%3E10_1002_solr_202300418%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c234t-85809377955c59e409366be77cad387504cebbd381992103f6d0d229ac181f543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |