Loading…
Recent Advances in III–V Compounds/Polymer Hybrid Solar Cells
The combination of III–V compound semiconductor materials and organic semiconductor materials to construct hybrid solar cells is a potential pathway to resolve the problems of conventional doped p–n junction solar cells, such as complexities in fabrication process and high costs. This review present...
Saved in:
Published in: | Solar RRL 2023-10, Vol.7 (19) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The combination of III–V compound semiconductor materials and organic semiconductor materials to construct hybrid solar cells is a potential pathway to resolve the problems of conventional doped p–n junction solar cells, such as complexities in fabrication process and high costs. This review presents the recent progress of organic–inorganic hybrid solar cells based on polymers and III–V semiconductors, from materials to devices. The available growth process for planar/nanostructured III–V semiconductor materials, along with patterning and etching processes for nanostructured materials, are reviewed. As an emphasis of this review, advanced device structure designs are reviewed for facilitation of carrier collection and high efficiency, at planar structure level and nanowire structure level, respectively. Optimization pathways for efficiency enhancement are discussed with respect to polymer layers and surface/interface passivation, respectively. Finally, perspectives on the future development of such hybrid cells are presented. |
---|---|
ISSN: | 2367-198X 2367-198X |
DOI: | 10.1002/solr.202300435 |