Loading…

Modeling Study of Turbulent Flow Effect on Inclusion Removal in a Tundish with Swirling Ladle Shroud

The present study is focused on the assessment of a new concept of ladle shroud capable to control the turbulence promoted by the steel entry jet in a continuous casting tundish; the new proposal is a Swirling Ladle Shroud (SLS). It presumed that the SLS decreases the impact velocities in the tundis...

Full description

Saved in:
Bibliographic Details
Published in:Steel research international 2009-03, Vol.80 (3), p.223-234
Main Authors: Solorio-Diaz, G., Ramos-Banderas, A., de J. Barreto, J., Morales, R. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study is focused on the assessment of a new concept of ladle shroud capable to control the turbulence promoted by the steel entry jet in a continuous casting tundish; the new proposal is a Swirling Ladle Shroud (SLS). It presumed that the SLS decreases the impact velocities in the tundish bottom close to 1/3 of that provided by a conventional shroud. In this mathematical study an analysis of turbulence control and particle removal is made by comparing the SLS with two different conventional tundish arrangements. Particle sizes included 1, 5, 20, 40, 60, 80, 100, 120, 140 and 160 microns. Simulations also included the effects of the mass flow rate on the removal efficiency of non‐metallic inclusions, considering 3.8 and 7.6 ton/min mass flow rates. It was found that the SLS is capable to handle different mass flow rates, opposite to the conventional arrangements where at any increase of mass flow rate, these devices become inefficient to control turbulence, reducing considerably the inclusion removal efficiency. These results illustrate that using a SLS, the turbulent flow control and the particle removal may be better with this new proposal.
ISSN:1611-3683
1869-344X
DOI:10.1002/srin.201090075