Loading…

Fine Structure, Thermal and Viscoelastic Properties of Starches Separated from Indica Rice Cultivars

Starches were separated from indica rice cultivars (PR‐113, Basmati‐370, Basmati‐386, PR‐115, IR‐64, and PR‐103) and evaluated using gel permeation chromatography (GPC), X‐ray diffraction, differential scanning calorimetry (DSC) and dynamic viscoelasticity. Debranching of starch with isoamylase and...

Full description

Saved in:
Bibliographic Details
Published in:Die Stärke 2007-01, Vol.59 (1), p.10-20
Main Authors: Singh, Narpinder, Nakaura, Yoshiko, Inouchi, Naoyoshi, Nishinari, Katsuyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Starches were separated from indica rice cultivars (PR‐113, Basmati‐370, Basmati‐386, PR‐115, IR‐64, and PR‐103) and evaluated using gel permeation chromatography (GPC), X‐ray diffraction, differential scanning calorimetry (DSC) and dynamic viscoelasticity. Debranching of starch with isoamylase and subsequent fractionation by GPC revealed 9.7–28.3% apparent amylose content, 3.7–5.0% intermediate fraction (mixture of short amylose and long side‐chains of amylopectin), 20.6–26.6% long side‐chains of amylopectin and 45.8–59.4% short side‐chains of amylopectin). IR‐64 starch with the highest crystallinity had the highest gelatinization temperatures and enthalpy, To, Tp, Tc, and ΔHgel being 71.8, 75.9, 82.4°C and 5.1 J/g, respectively, whereas PR‐113 starch with lower crystallinity showed the lowest gelatinization temperatures (To, Tp, Tc, of 60.8, 65.7 and 72.2°C, respectively). Basmati‐386 starch exhibited two endotherms during heating, the first and second endotherm being associated with the melting of crystallites and amylose‐lipid complexes, respectively. To, Tp, Tc and ΔHgel of the second endotherm of Basmati‐386 starch were 99.0, 100.1, 101.1°C and 2.0 J/g, respectively. During cooling, Basmati‐386 also showed an exotherm at a peak temperature of 87°C. PR‐113 starch with the highest amylose content and the lowest content of short side‐chains of amylopectin had the highest peak storage modulus (G′= 1.6×104 Pa). The granules of PR‐113 starch were the least disintegrated after heating. The effects of heating starch suspensions at different temperatures (92°C, 130°C and 170°C) on intrinsic viscosity [η], transmittance and viscoelasticity were also studied to evaluate the extent of breakdown of the molecular structure. The intrinsic viscosity of starch suspensions heated at 92, 130 and 170°C ranged between 103–114, 96–110 and 28–93 mL/g. Transmittance value of starches cooked at 92°C decreased with increase in storage duration. All starches except PR103, cooked at 130°C also showed decrease in transmittance during storage, however, at lower rate. PR103 starch heated at 130°C did not show any change in transmittance up to a storage time of 48 h. The changes in viscoelasticity of starch pastes cooked at different temperatures during cooling and reheating were also evaluated. G′ and G′′ increased with decrease in temperature during cooling cycle. Starches heated at 130°C with apparent amylose content ≤21.2% showed an improvement in G′ and G′′ in comparison to th
ISSN:0038-9056
1521-379X
DOI:10.1002/star.200600527