Loading…
Oscillation of perturbed nonlinear dynamic equations on time scales
In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtai...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2005-10, Vol.85 (10), p.755-760 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73 |
container_end_page | 760 |
container_issue | 10 |
container_start_page | 755 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 85 |
creator | Sun, H.-R. Li, W.-R. |
description | In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results. |
doi_str_mv | 10.1002/zamm.200310212 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200310212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_QTJ2T0RH_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnnPxmLpf2U2OpWirtBalInhZNpsJrOaj7qZo_fVujVRvwgwzDO8zM7wInRM8IhjTy09d1yOKMSOYEnqABiShJOYYk0M0wJjzmFIhj9GJ9y84TDPCBmiy9MZWle5s20RtGa3BdRuXQxE1bVPZBrSLim2ja2sieNt863wUtJ2tIfJGV-BP0VGpKw9nP3WIHq-vVpNZPF9ObybjeWwYoTTOpQAqNckJFjI8kENS0owJAlyEJuWcpcAEiEJwASbLQxQJS5OMJqkoJBuiUb_XuNZ7B6VaO1trt1UEq50FameB2lsQgIseWOvdp6XTjbH-l5KE05BBl_W6d1vB9p-t6nm8WPy9Efes9R187FntXpWQTCbq6W6q7le3dIUfZmrKvgBNTXvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillation of perturbed nonlinear dynamic equations on time scales</title><source>Wiley</source><creator>Sun, H.-R. ; Li, W.-R.</creator><creatorcontrib>Sun, H.-R. ; Li, W.-R.</creatorcontrib><description>In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200310212</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>dynamic equation ; Exact sciences and technology ; Finite differences and functional equations ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; oscillation ; Sciences and techniques of general use ; time scales</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2005-10, Vol.85 (10), p.755-760</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17142714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, H.-R.</creatorcontrib><creatorcontrib>Li, W.-R.</creatorcontrib><title>Oscillation of perturbed nonlinear dynamic equations on time scales</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.</description><subject>dynamic equation</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>oscillation</subject><subject>Sciences and techniques of general use</subject><subject>time scales</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnnPxmLpf2U2OpWirtBalInhZNpsJrOaj7qZo_fVujVRvwgwzDO8zM7wInRM8IhjTy09d1yOKMSOYEnqABiShJOYYk0M0wJjzmFIhj9GJ9y84TDPCBmiy9MZWle5s20RtGa3BdRuXQxE1bVPZBrSLim2ja2sieNt863wUtJ2tIfJGV-BP0VGpKw9nP3WIHq-vVpNZPF9ObybjeWwYoTTOpQAqNckJFjI8kENS0owJAlyEJuWcpcAEiEJwASbLQxQJS5OMJqkoJBuiUb_XuNZ7B6VaO1trt1UEq50FameB2lsQgIseWOvdp6XTjbH-l5KE05BBl_W6d1vB9p-t6nm8WPy9Efes9R187FntXpWQTCbq6W6q7le3dIUfZmrKvgBNTXvO</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Sun, H.-R.</creator><creator>Li, W.-R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200510</creationdate><title>Oscillation of perturbed nonlinear dynamic equations on time scales</title><author>Sun, H.-R. ; Li, W.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>dynamic equation</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>oscillation</topic><topic>Sciences and techniques of general use</topic><topic>time scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, H.-R.</creatorcontrib><creatorcontrib>Li, W.-R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, H.-R.</au><au>Li, W.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation of perturbed nonlinear dynamic equations on time scales</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2005-10</date><risdate>2005</risdate><volume>85</volume><issue>10</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200310212</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2005-10, Vol.85 (10), p.755-760 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_crossref_primary_10_1002_zamm_200310212 |
source | Wiley |
subjects | dynamic equation Exact sciences and technology Finite differences and functional equations Mathematical analysis Mathematics Ordinary differential equations oscillation Sciences and techniques of general use time scales |
title | Oscillation of perturbed nonlinear dynamic equations on time scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20of%20perturbed%20nonlinear%20dynamic%20equations%20on%20time%20scales&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Sun,%20H.-R.&rft.date=2005-10&rft.volume=85&rft.issue=10&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200310212&rft_dat=%3Cistex_cross%3Eark_67375_WNG_QTJ2T0RH_G%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |