Loading…

Oscillation of perturbed nonlinear dynamic equations on time scales

In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtai...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2005-10, Vol.85 (10), p.755-760
Main Authors: Sun, H.-R., Li, W.-R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73
container_end_page 760
container_issue 10
container_start_page 755
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 85
creator Sun, H.-R.
Li, W.-R.
description In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.
doi_str_mv 10.1002/zamm.200310212
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_zamm_200310212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_QTJ2T0RH_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnnPxmLpf2U2OpWirtBalInhZNpsJrOaj7qZo_fVujVRvwgwzDO8zM7wInRM8IhjTy09d1yOKMSOYEnqABiShJOYYk0M0wJjzmFIhj9GJ9y84TDPCBmiy9MZWle5s20RtGa3BdRuXQxE1bVPZBrSLim2ja2sieNt863wUtJ2tIfJGV-BP0VGpKw9nP3WIHq-vVpNZPF9ObybjeWwYoTTOpQAqNckJFjI8kENS0owJAlyEJuWcpcAEiEJwASbLQxQJS5OMJqkoJBuiUb_XuNZ7B6VaO1trt1UEq50FameB2lsQgIseWOvdp6XTjbH-l5KE05BBl_W6d1vB9p-t6nm8WPy9Efes9R187FntXpWQTCbq6W6q7le3dIUfZmrKvgBNTXvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oscillation of perturbed nonlinear dynamic equations on time scales</title><source>Wiley</source><creator>Sun, H.-R. ; Li, W.-R.</creator><creatorcontrib>Sun, H.-R. ; Li, W.-R.</creatorcontrib><description>In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.200310212</identifier><identifier>CODEN: ZAMMAX</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>dynamic equation ; Exact sciences and technology ; Finite differences and functional equations ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; oscillation ; Sciences and techniques of general use ; time scales</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2005-10, Vol.85 (10), p.755-760</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17142714$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, H.-R.</creatorcontrib><creatorcontrib>Li, W.-R.</creatorcontrib><title>Oscillation of perturbed nonlinear dynamic equations on time scales</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. angew. Math. Mech</addtitle><description>In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.</description><subject>dynamic equation</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>oscillation</subject><subject>Sciences and techniques of general use</subject><subject>time scales</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnnPxmLpf2U2OpWirtBalInhZNpsJrOaj7qZo_fVujVRvwgwzDO8zM7wInRM8IhjTy09d1yOKMSOYEnqABiShJOYYk0M0wJjzmFIhj9GJ9y84TDPCBmiy9MZWle5s20RtGa3BdRuXQxE1bVPZBrSLim2ja2sieNt863wUtJ2tIfJGV-BP0VGpKw9nP3WIHq-vVpNZPF9ObybjeWwYoTTOpQAqNckJFjI8kENS0owJAlyEJuWcpcAEiEJwASbLQxQJS5OMJqkoJBuiUb_XuNZ7B6VaO1trt1UEq50FameB2lsQgIseWOvdp6XTjbH-l5KE05BBl_W6d1vB9p-t6nm8WPy9Efes9R187FntXpWQTCbq6W6q7le3dIUfZmrKvgBNTXvO</recordid><startdate>200510</startdate><enddate>200510</enddate><creator>Sun, H.-R.</creator><creator>Li, W.-R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200510</creationdate><title>Oscillation of perturbed nonlinear dynamic equations on time scales</title><author>Sun, H.-R. ; Li, W.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>dynamic equation</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>oscillation</topic><topic>Sciences and techniques of general use</topic><topic>time scales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, H.-R.</creatorcontrib><creatorcontrib>Li, W.-R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, H.-R.</au><au>Li, W.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation of perturbed nonlinear dynamic equations on time scales</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. angew. Math. Mech</addtitle><date>2005-10</date><risdate>2005</risdate><volume>85</volume><issue>10</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><coden>ZAMMAX</coden><abstract>In this paper we consider the oscillatory and asymptotic behavior of bounded solutions of second‐order nonlinear perturbed dynamic equation (α(t)(xΔ(t))r)Δ+ F(t,xσ (t)) = G(t, xσ (t), xΔ (t)), t ∈T , (0.1) where r = k/l with k even and l odd positive integer. Some new sufficient conditions are obtained for all bounded solutions of (0.1) to be oscillatory. Several examples that dwell upon the importance of our results are also included. In particular, our criteria extend some earlier results.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/zamm.200310212</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2005-10, Vol.85 (10), p.755-760
issn 0044-2267
1521-4001
language eng
recordid cdi_crossref_primary_10_1002_zamm_200310212
source Wiley
subjects dynamic equation
Exact sciences and technology
Finite differences and functional equations
Mathematical analysis
Mathematics
Ordinary differential equations
oscillation
Sciences and techniques of general use
time scales
title Oscillation of perturbed nonlinear dynamic equations on time scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20of%20perturbed%20nonlinear%20dynamic%20equations%20on%20time%20scales&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Sun,%20H.-R.&rft.date=2005-10&rft.volume=85&rft.issue=10&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=0044-2267&rft.eissn=1521-4001&rft.coden=ZAMMAX&rft_id=info:doi/10.1002/zamm.200310212&rft_dat=%3Cistex_cross%3Eark_67375_WNG_QTJ2T0RH_G%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3122-b76e27a1b1067000be5f29361e46f2984438e36e6d646ec9bc9bd538592586d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true