Loading…
Spectral Analysis on Homogeneous Trees
For each complex numberz, we construct an operatorHzdefined on the space of all complex-valued functions on a homogeneous tree. This operator has the property that if a functionfis harmonic (i.e., the local averaging operator fixes the values off), thenHz(f) isz-harmonic (i.e., the local averaging o...
Saved in:
Published in: | Advances in applied mathematics 1998-02, Vol.20 (2), p.253-274 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573 |
container_end_page | 274 |
container_issue | 2 |
container_start_page | 253 |
container_title | Advances in applied mathematics |
container_volume | 20 |
creator | Cohen, Joel M Colonna, Flavia |
description | For each complex numberz, we construct an operatorHzdefined on the space of all complex-valued functions on a homogeneous tree. This operator has the property that if a functionfis harmonic (i.e., the local averaging operator fixes the values off), thenHz(f) isz-harmonic (i.e., the local averaging operator multipliesHz(f) byz). Because the Laplacian is the local averaging operator minus the identity, az-harmonic function is an eigenfunction of the Laplacian relative to the eigenvaluez−1. We show that allz-harmonic functions are in the image ofHz, and we compareHzto another well-known operator which converts harmonic functions toz-harmonic functions. We then study the problem of representing a function as the integral ofz-harmonic functions with respect to a distribution. In particular, if a function grows no faster than exponentially, then the distribution is of the formf(z,−)dλ(z), wheref(z,−) is az-harmonic function and λ is the Lebesgue measure in C. If the base of the growth is sufficiently small, the distribution is supported over the interval [equation] |
doi_str_mv | 10.1006/aama.1997.0570 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aama_1997_0570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885897905704</els_id><sourcerecordid>S0196885897905704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573</originalsourceid><addsrcrecordid>eNp1j0FLxDAQRoMouK5ePfcg3lonSdMkx2VRV1jw4HoO03QqkW67JKuw_96WijdPw8D3vpnH2C2HggNUD4h7LLi1ugCl4YwtOFjIBejynC2A2yo3RplLdpXSJwBYUckFu387kD9G7LJVj90phZQNfbYZ9sMH9TR8pWwXidI1u2ixS3TzO5fs_elxt97k29fnl_Vqm3up1DEXGoxE6XWj60oSeiNAmErJVpiaSwUcqW1JC1C11VyWoh43L0rRaFsrLZesmHt9HFKK1LpDDHuMJ8fBTZZusnSTpZssR-BuBg6YPHZtxN6H9EeJUbsUcoyZOUbj89-Boks-UO-pCXH0d80Q_rvwA5T6Y9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral Analysis on Homogeneous Trees</title><source>ScienceDirect Freedom Collection</source><creator>Cohen, Joel M ; Colonna, Flavia</creator><creatorcontrib>Cohen, Joel M ; Colonna, Flavia</creatorcontrib><description>For each complex numberz, we construct an operatorHzdefined on the space of all complex-valued functions on a homogeneous tree. This operator has the property that if a functionfis harmonic (i.e., the local averaging operator fixes the values off), thenHz(f) isz-harmonic (i.e., the local averaging operator multipliesHz(f) byz). Because the Laplacian is the local averaging operator minus the identity, az-harmonic function is an eigenfunction of the Laplacian relative to the eigenvaluez−1. We show that allz-harmonic functions are in the image ofHz, and we compareHzto another well-known operator which converts harmonic functions toz-harmonic functions. We then study the problem of representing a function as the integral ofz-harmonic functions with respect to a distribution. In particular, if a function grows no faster than exponentially, then the distribution is of the formf(z,−)dλ(z), wheref(z,−) is az-harmonic function and λ is the Lebesgue measure in C. If the base of the growth is sufficiently small, the distribution is supported over the interval [equation]</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1997.0570</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Functions of a complex variable ; Mathematical analysis ; Mathematics ; Potential theory ; Sciences and techniques of general use ; Several complex variables and analytic spaces</subject><ispartof>Advances in applied mathematics, 1998-02, Vol.20 (2), p.253-274</ispartof><rights>1998 Academic Press</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573</citedby><cites>FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2196423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Joel M</creatorcontrib><creatorcontrib>Colonna, Flavia</creatorcontrib><title>Spectral Analysis on Homogeneous Trees</title><title>Advances in applied mathematics</title><description>For each complex numberz, we construct an operatorHzdefined on the space of all complex-valued functions on a homogeneous tree. This operator has the property that if a functionfis harmonic (i.e., the local averaging operator fixes the values off), thenHz(f) isz-harmonic (i.e., the local averaging operator multipliesHz(f) byz). Because the Laplacian is the local averaging operator minus the identity, az-harmonic function is an eigenfunction of the Laplacian relative to the eigenvaluez−1. We show that allz-harmonic functions are in the image ofHz, and we compareHzto another well-known operator which converts harmonic functions toz-harmonic functions. We then study the problem of representing a function as the integral ofz-harmonic functions with respect to a distribution. In particular, if a function grows no faster than exponentially, then the distribution is of the formf(z,−)dλ(z), wheref(z,−) is az-harmonic function and λ is the Lebesgue measure in C. If the base of the growth is sufficiently small, the distribution is supported over the interval [equation]</description><subject>Exact sciences and technology</subject><subject>Functions of a complex variable</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Potential theory</subject><subject>Sciences and techniques of general use</subject><subject>Several complex variables and analytic spaces</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLxDAQRoMouK5ePfcg3lonSdMkx2VRV1jw4HoO03QqkW67JKuw_96WijdPw8D3vpnH2C2HggNUD4h7LLi1ugCl4YwtOFjIBejynC2A2yo3RplLdpXSJwBYUckFu387kD9G7LJVj90phZQNfbYZ9sMH9TR8pWwXidI1u2ixS3TzO5fs_elxt97k29fnl_Vqm3up1DEXGoxE6XWj60oSeiNAmErJVpiaSwUcqW1JC1C11VyWoh43L0rRaFsrLZesmHt9HFKK1LpDDHuMJ8fBTZZusnSTpZssR-BuBg6YPHZtxN6H9EeJUbsUcoyZOUbj89-Boks-UO-pCXH0d80Q_rvwA5T6Y9s</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Cohen, Joel M</creator><creator>Colonna, Flavia</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980201</creationdate><title>Spectral Analysis on Homogeneous Trees</title><author>Cohen, Joel M ; Colonna, Flavia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Exact sciences and technology</topic><topic>Functions of a complex variable</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Potential theory</topic><topic>Sciences and techniques of general use</topic><topic>Several complex variables and analytic spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Joel M</creatorcontrib><creatorcontrib>Colonna, Flavia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Joel M</au><au>Colonna, Flavia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Analysis on Homogeneous Trees</atitle><jtitle>Advances in applied mathematics</jtitle><date>1998-02-01</date><risdate>1998</risdate><volume>20</volume><issue>2</issue><spage>253</spage><epage>274</epage><pages>253-274</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>For each complex numberz, we construct an operatorHzdefined on the space of all complex-valued functions on a homogeneous tree. This operator has the property that if a functionfis harmonic (i.e., the local averaging operator fixes the values off), thenHz(f) isz-harmonic (i.e., the local averaging operator multipliesHz(f) byz). Because the Laplacian is the local averaging operator minus the identity, az-harmonic function is an eigenfunction of the Laplacian relative to the eigenvaluez−1. We show that allz-harmonic functions are in the image ofHz, and we compareHzto another well-known operator which converts harmonic functions toz-harmonic functions. We then study the problem of representing a function as the integral ofz-harmonic functions with respect to a distribution. In particular, if a function grows no faster than exponentially, then the distribution is of the formf(z,−)dλ(z), wheref(z,−) is az-harmonic function and λ is the Lebesgue measure in C. If the base of the growth is sufficiently small, the distribution is supported over the interval [equation]</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.1997.0570</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8858 |
ispartof | Advances in applied mathematics, 1998-02, Vol.20 (2), p.253-274 |
issn | 0196-8858 1090-2074 |
language | eng |
recordid | cdi_crossref_primary_10_1006_aama_1997_0570 |
source | ScienceDirect Freedom Collection |
subjects | Exact sciences and technology Functions of a complex variable Mathematical analysis Mathematics Potential theory Sciences and techniques of general use Several complex variables and analytic spaces |
title | Spectral Analysis on Homogeneous Trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Analysis%20on%20Homogeneous%20Trees&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Cohen,%20Joel%20M&rft.date=1998-02-01&rft.volume=20&rft.issue=2&rft.spage=253&rft.epage=274&rft.pages=253-274&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.1997.0570&rft_dat=%3Celsevier_cross%3ES0196885897905704%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-27083a3c7d7b63eac82028653f28b13501aeffe7205b971342bfe7c242d79b573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |