Loading…
Catalase-like Oxygen Production by Horseradish Peroxidase Must Predominantly Be an Enzyme-Catalyzed Reaction
When hydrogen peroxide (H2O2) was provided as the only substrate for horseradish peroxidase C (HRP-C) the catalase-like emission of oxygen gas was observed. The reaction was favored at neutral compared to acidic pH. Addition of the superoxide radical scavengers tetranitromethane (TNM) or superoxide...
Saved in:
Published in: | Archives of biochemistry and biophysics 2001-08, Vol.392 (2), p.295-302 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When hydrogen peroxide (H2O2) was provided as the only substrate for horseradish peroxidase C (HRP-C) the catalase-like emission of oxygen gas was observed. The reaction was favored at neutral compared to acidic pH. Addition of the superoxide radical scavengers tetranitromethane (TNM) or superoxide dismutase (SOD) increased activity. TNM's effect was concentration dependent but SOD's was not, indicating that only some of the superoxide generated was released into solution. Manganous ions (Mn2+) react with superoxide radicals to regenerate H2O2 but not oxygen; when added to the reaction medium oxygen production was reduced but not abolished. The effect was essentially concentration independent, suggesting that most oxygen was produced enzymatically and not by chemical disproportionation of superoxide. The catalase-like activities of some site-directed mutants of HRP-C suggest that active site residues histidine 42 and arginine 38 are influential in determining this activity. A clear correlation also existed between catalase activity and the enzymes' resistance to inactivation by H2O2. Computer simulation of a reaction scheme that included catalase-like activity agreed well with experimental data. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1006/abbi.2001.2460 |