Loading…

Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay

In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. S...

Full description

Saved in:
Bibliographic Details
Published in:Archives of biochemistry and biophysics 2002-04, Vol.400 (1), p.15-25
Main Authors: Subramaniam, Ram, Fan, Xing-Jun, Scivittaro, Vincenzo, Yang, Jianqi, Ha, Chung-Eun, Petersen, Charles E., Surewicz, Witold K., Bhagavan, Nadhipuram V., Weiss, Miriam F., Monnier, Vincent M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843
cites cdi_FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843
container_end_page 25
container_issue 1
container_start_page 15
container_title Archives of biochemistry and biophysics
container_volume 400
creator Subramaniam, Ram
Fan, Xing-Jun
Scivittaro, Vincenzo
Yang, Jianqi
Ha, Chung-Eun
Petersen, Charles E.
Surewicz, Witold K.
Bhagavan, Nadhipuram V.
Weiss, Miriam F.
Monnier, Vincent M.
description In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. Strongest fluorescence was observed with methylglyoxal modified albumin (MGO–BSA) compared with native albumin. Similar effects that were prevented by arginine coincubation were seen with phenylglyoxal-BSA. MGO–BSA had increased affinity for Cu2+ and Ca2+, but was conformationally similar to native albumin. Surprisingly, the mere addition of unmodified albumin to cells suppressed the fluorescence of oxidized DCF. While, several site-directed mutants of human serum albumin (HSA), including C34S and recombinant domains II and III retained fluorescence suppressing activity, proteolytic digests, recombinant domain I, and several nonalbumin proteins failed to suppress. Kinetic and ANS binding studies suggested albumin quenches DCF fluorescence by binding to hydrophobic pockets in domains II and III and that MGO–BSA is less hydrophobic than BSA. Finally, BSA also prevented H2O2 catalyzed DCF fluorescence more potently than MGO–BSA. These studies reveal important caveats of the widely used dichlorofluorescein assay and suggest methods other than the microtiter plate assay are needed to accurately assess cellular oxidant stress in presence of native or modified albumin.
doi_str_mv 10.1006/abbi.2002.2776
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_abbi_2002_2776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986102927761</els_id><sourcerecordid>11913966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK1ePcr-gdT9SDaJtxLrBxR6UM9hdndKV9Js2U2K_fcmtODJ08DwvC8zDyH3nM05Y-oRtHZzwZiYizxXF2TKWakSJov0kkwZYzIpC8Un5CbGb8Y4T5W4JhPOSy5LpabEV9g0fQOBrn-chbajH13AGCm0li7sAVqDlr42RwOd8y1dtnYfvO1NF6nf0EWj-51rn2gFB4TTrtsifXZm2_jgN03vhzqDrqWLGOF4S6420ES8O88Z-XpZflZvyWr9-l4tVomRqegS1IAmxVRo1DmY4R0UQoKQWjHQwggwqUiLrJCZNioDzGSWG5WzUuYWilTOyPzUa4KPMeCm3ge3g3CsOatHc_Vorh7N1aO5IfBwCux7vUP7h59VDUBxAnA4--Aw1NE4HPW4gKarrXf_df8CwG5-lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay</title><source>ScienceDirect Freedom Collection</source><creator>Subramaniam, Ram ; Fan, Xing-Jun ; Scivittaro, Vincenzo ; Yang, Jianqi ; Ha, Chung-Eun ; Petersen, Charles E. ; Surewicz, Witold K. ; Bhagavan, Nadhipuram V. ; Weiss, Miriam F. ; Monnier, Vincent M.</creator><creatorcontrib>Subramaniam, Ram ; Fan, Xing-Jun ; Scivittaro, Vincenzo ; Yang, Jianqi ; Ha, Chung-Eun ; Petersen, Charles E. ; Surewicz, Witold K. ; Bhagavan, Nadhipuram V. ; Weiss, Miriam F. ; Monnier, Vincent M.</creatorcontrib><description>In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. Strongest fluorescence was observed with methylglyoxal modified albumin (MGO–BSA) compared with native albumin. Similar effects that were prevented by arginine coincubation were seen with phenylglyoxal-BSA. MGO–BSA had increased affinity for Cu2+ and Ca2+, but was conformationally similar to native albumin. Surprisingly, the mere addition of unmodified albumin to cells suppressed the fluorescence of oxidized DCF. While, several site-directed mutants of human serum albumin (HSA), including C34S and recombinant domains II and III retained fluorescence suppressing activity, proteolytic digests, recombinant domain I, and several nonalbumin proteins failed to suppress. Kinetic and ANS binding studies suggested albumin quenches DCF fluorescence by binding to hydrophobic pockets in domains II and III and that MGO–BSA is less hydrophobic than BSA. Finally, BSA also prevented H2O2 catalyzed DCF fluorescence more potently than MGO–BSA. These studies reveal important caveats of the widely used dichlorofluorescein assay and suggest methods other than the microtiter plate assay are needed to accurately assess cellular oxidant stress in presence of native or modified albumin.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1006/abbi.2002.2776</identifier><identifier>PMID: 11913966</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>albumin ; Animals ; Arginine - chemistry ; Calcium - metabolism ; Calcium Chloride - metabolism ; Cell Line ; Chickens ; Circular Dichroism ; Copper - metabolism ; dichlorofluorescein ; Dose-Response Relationship, Drug ; Fluoresceins - pharmacology ; Fluorescent Dyes - pharmacology ; glycation ; Glycation End Products, Advanced - chemistry ; Glycation End Products, Advanced - metabolism ; Hydrolysis ; Iron - metabolism ; methylglyoxal ; Mice ; Mutagenesis, Site-Directed ; Mutation ; Oxidative Stress ; Oxygen - metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Reactive Oxygen Species ; Recombinant Proteins - metabolism ; Serum Albumin, Bovine - chemistry ; Serum Albumin, Bovine - metabolism ; Spectrometry, Fluorescence ; Structure-Activity Relationship ; Time Factors</subject><ispartof>Archives of biochemistry and biophysics, 2002-04, Vol.400 (1), p.15-25</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843</citedby><cites>FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11913966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramaniam, Ram</creatorcontrib><creatorcontrib>Fan, Xing-Jun</creatorcontrib><creatorcontrib>Scivittaro, Vincenzo</creatorcontrib><creatorcontrib>Yang, Jianqi</creatorcontrib><creatorcontrib>Ha, Chung-Eun</creatorcontrib><creatorcontrib>Petersen, Charles E.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><creatorcontrib>Bhagavan, Nadhipuram V.</creatorcontrib><creatorcontrib>Weiss, Miriam F.</creatorcontrib><creatorcontrib>Monnier, Vincent M.</creatorcontrib><title>Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. Strongest fluorescence was observed with methylglyoxal modified albumin (MGO–BSA) compared with native albumin. Similar effects that were prevented by arginine coincubation were seen with phenylglyoxal-BSA. MGO–BSA had increased affinity for Cu2+ and Ca2+, but was conformationally similar to native albumin. Surprisingly, the mere addition of unmodified albumin to cells suppressed the fluorescence of oxidized DCF. While, several site-directed mutants of human serum albumin (HSA), including C34S and recombinant domains II and III retained fluorescence suppressing activity, proteolytic digests, recombinant domain I, and several nonalbumin proteins failed to suppress. Kinetic and ANS binding studies suggested albumin quenches DCF fluorescence by binding to hydrophobic pockets in domains II and III and that MGO–BSA is less hydrophobic than BSA. Finally, BSA also prevented H2O2 catalyzed DCF fluorescence more potently than MGO–BSA. These studies reveal important caveats of the widely used dichlorofluorescein assay and suggest methods other than the microtiter plate assay are needed to accurately assess cellular oxidant stress in presence of native or modified albumin.</description><subject>albumin</subject><subject>Animals</subject><subject>Arginine - chemistry</subject><subject>Calcium - metabolism</subject><subject>Calcium Chloride - metabolism</subject><subject>Cell Line</subject><subject>Chickens</subject><subject>Circular Dichroism</subject><subject>Copper - metabolism</subject><subject>dichlorofluorescein</subject><subject>Dose-Response Relationship, Drug</subject><subject>Fluoresceins - pharmacology</subject><subject>Fluorescent Dyes - pharmacology</subject><subject>glycation</subject><subject>Glycation End Products, Advanced - chemistry</subject><subject>Glycation End Products, Advanced - metabolism</subject><subject>Hydrolysis</subject><subject>Iron - metabolism</subject><subject>methylglyoxal</subject><subject>Mice</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oxidative Stress</subject><subject>Oxygen - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Reactive Oxygen Species</subject><subject>Recombinant Proteins - metabolism</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Spectrometry, Fluorescence</subject><subject>Structure-Activity Relationship</subject><subject>Time Factors</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK1ePcr-gdT9SDaJtxLrBxR6UM9hdndKV9Js2U2K_fcmtODJ08DwvC8zDyH3nM05Y-oRtHZzwZiYizxXF2TKWakSJov0kkwZYzIpC8Un5CbGb8Y4T5W4JhPOSy5LpabEV9g0fQOBrn-chbajH13AGCm0li7sAVqDlr42RwOd8y1dtnYfvO1NF6nf0EWj-51rn2gFB4TTrtsifXZm2_jgN03vhzqDrqWLGOF4S6420ES8O88Z-XpZflZvyWr9-l4tVomRqegS1IAmxVRo1DmY4R0UQoKQWjHQwggwqUiLrJCZNioDzGSWG5WzUuYWilTOyPzUa4KPMeCm3ge3g3CsOatHc_Vorh7N1aO5IfBwCux7vUP7h59VDUBxAnA4--Aw1NE4HPW4gKarrXf_df8CwG5-lw</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Subramaniam, Ram</creator><creator>Fan, Xing-Jun</creator><creator>Scivittaro, Vincenzo</creator><creator>Yang, Jianqi</creator><creator>Ha, Chung-Eun</creator><creator>Petersen, Charles E.</creator><creator>Surewicz, Witold K.</creator><creator>Bhagavan, Nadhipuram V.</creator><creator>Weiss, Miriam F.</creator><creator>Monnier, Vincent M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020401</creationdate><title>Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay</title><author>Subramaniam, Ram ; Fan, Xing-Jun ; Scivittaro, Vincenzo ; Yang, Jianqi ; Ha, Chung-Eun ; Petersen, Charles E. ; Surewicz, Witold K. ; Bhagavan, Nadhipuram V. ; Weiss, Miriam F. ; Monnier, Vincent M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>albumin</topic><topic>Animals</topic><topic>Arginine - chemistry</topic><topic>Calcium - metabolism</topic><topic>Calcium Chloride - metabolism</topic><topic>Cell Line</topic><topic>Chickens</topic><topic>Circular Dichroism</topic><topic>Copper - metabolism</topic><topic>dichlorofluorescein</topic><topic>Dose-Response Relationship, Drug</topic><topic>Fluoresceins - pharmacology</topic><topic>Fluorescent Dyes - pharmacology</topic><topic>glycation</topic><topic>Glycation End Products, Advanced - chemistry</topic><topic>Glycation End Products, Advanced - metabolism</topic><topic>Hydrolysis</topic><topic>Iron - metabolism</topic><topic>methylglyoxal</topic><topic>Mice</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oxidative Stress</topic><topic>Oxygen - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Reactive Oxygen Species</topic><topic>Recombinant Proteins - metabolism</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Spectrometry, Fluorescence</topic><topic>Structure-Activity Relationship</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramaniam, Ram</creatorcontrib><creatorcontrib>Fan, Xing-Jun</creatorcontrib><creatorcontrib>Scivittaro, Vincenzo</creatorcontrib><creatorcontrib>Yang, Jianqi</creatorcontrib><creatorcontrib>Ha, Chung-Eun</creatorcontrib><creatorcontrib>Petersen, Charles E.</creatorcontrib><creatorcontrib>Surewicz, Witold K.</creatorcontrib><creatorcontrib>Bhagavan, Nadhipuram V.</creatorcontrib><creatorcontrib>Weiss, Miriam F.</creatorcontrib><creatorcontrib>Monnier, Vincent M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramaniam, Ram</au><au>Fan, Xing-Jun</au><au>Scivittaro, Vincenzo</au><au>Yang, Jianqi</au><au>Ha, Chung-Eun</au><au>Petersen, Charles E.</au><au>Surewicz, Witold K.</au><au>Bhagavan, Nadhipuram V.</au><au>Weiss, Miriam F.</au><au>Monnier, Vincent M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>400</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>In order to understand the mechanism by which advanced glycation endproducts (AGEs) elicit oxidative stress, macrophage-like RAW264.7 cells were exposed to various AGE-albumins, and oxidant stress was estimated from the fluorescence of oxidized dichlorofluorescein using the microtiter plate assay. Strongest fluorescence was observed with methylglyoxal modified albumin (MGO–BSA) compared with native albumin. Similar effects that were prevented by arginine coincubation were seen with phenylglyoxal-BSA. MGO–BSA had increased affinity for Cu2+ and Ca2+, but was conformationally similar to native albumin. Surprisingly, the mere addition of unmodified albumin to cells suppressed the fluorescence of oxidized DCF. While, several site-directed mutants of human serum albumin (HSA), including C34S and recombinant domains II and III retained fluorescence suppressing activity, proteolytic digests, recombinant domain I, and several nonalbumin proteins failed to suppress. Kinetic and ANS binding studies suggested albumin quenches DCF fluorescence by binding to hydrophobic pockets in domains II and III and that MGO–BSA is less hydrophobic than BSA. Finally, BSA also prevented H2O2 catalyzed DCF fluorescence more potently than MGO–BSA. These studies reveal important caveats of the widely used dichlorofluorescein assay and suggest methods other than the microtiter plate assay are needed to accurately assess cellular oxidant stress in presence of native or modified albumin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11913966</pmid><doi>10.1006/abbi.2002.2776</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 2002-04, Vol.400 (1), p.15-25
issn 0003-9861
1096-0384
language eng
recordid cdi_crossref_primary_10_1006_abbi_2002_2776
source ScienceDirect Freedom Collection
subjects albumin
Animals
Arginine - chemistry
Calcium - metabolism
Calcium Chloride - metabolism
Cell Line
Chickens
Circular Dichroism
Copper - metabolism
dichlorofluorescein
Dose-Response Relationship, Drug
Fluoresceins - pharmacology
Fluorescent Dyes - pharmacology
glycation
Glycation End Products, Advanced - chemistry
Glycation End Products, Advanced - metabolism
Hydrolysis
Iron - metabolism
methylglyoxal
Mice
Mutagenesis, Site-Directed
Mutation
Oxidative Stress
Oxygen - metabolism
Protein Binding
Protein Conformation
Protein Structure, Tertiary
Reactive Oxygen Species
Recombinant Proteins - metabolism
Serum Albumin, Bovine - chemistry
Serum Albumin, Bovine - metabolism
Spectrometry, Fluorescence
Structure-Activity Relationship
Time Factors
title Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Oxidant%20Stress%20and%20Advanced%20Glycation%20Endproducts%20of%20Albumin:%20Caveats%20of%20the%20Dichlorofluorescein%20Assay&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Subramaniam,%20Ram&rft.date=2002-04-01&rft.volume=400&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1006/abbi.2002.2776&rft_dat=%3Cpubmed_cross%3E11913966%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-ebaec4e42beb7ac384e223a23b60ab2c2ac42485835bc65ae5357c670937da843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/11913966&rfr_iscdi=true