Loading…

Vector Invariants ofU2(Fp) : A Proof of a Conjecture of Richman

In this paper we prove a conjecture of D. R. Richman concerning the vector invariants of the groupU2(Fp). LetVbe a vector space of dimension 2 with basisx,yover the fieldFpand letFp[x, y] be the symmetric algebra ofVoverFp. Ifσdenotes a generator ofU2(Fp) then we may assumeσ(x)=xandσ(y)=x+y. LetAnbe...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 1997-03, Vol.126 (1), p.1-20
Main Authors: Campbell, H.E.A., Hughes, I.P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3
cites cdi_FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3
container_end_page 20
container_issue 1
container_start_page 1
container_title Advances in mathematics (New York. 1965)
container_volume 126
creator Campbell, H.E.A.
Hughes, I.P.
description In this paper we prove a conjecture of D. R. Richman concerning the vector invariants of the groupU2(Fp). LetVbe a vector space of dimension 2 with basisx,yover the fieldFpand letFp[x, y] be the symmetric algebra ofVoverFp. Ifσdenotes a generator ofU2(Fp) then we may assumeσ(x)=xandσ(y)=x+y. LetAnbe the symmetric algebra ofV⊕n. We obtain an automorphism ofAnof order p by using the diagonal action ofσextended to the whole ofAn. The subalgebra of polynomials left invariant by this action is called the ring of vector invariants ofU2(Fp). Richman conjectured that these rings of invariants have certain sets of generators and gave a proof in the casep=2. We prove his conjecture for all primes.
doi_str_mv 10.1006/aima.1996.1590
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aima_1996_1590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000187089691590X</els_id><sourcerecordid>S000187089691590X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3</originalsourceid><addsrcrecordid>eNp1j0FLAzEQRoMouFavnnPUw66TbLJJvEgpVgsFRazXkGYTTLGbktSC_94s9epp-IbvDfMQuibQEIDuzoStaYhSXUO4ghNUEVBQU5D0FFUAQGopQJ6ji5w3JSpGVIUePpzdx4QXw8GkYIZ9xtGv6M18d4vv8RS_phh9WWGDZ3HYlPJ3cmN-C_Zza4ZLdObNV3ZXf3OCVvPH99lzvXx5Wsymy9pSRqBWvTdE2U4wbg30VlLHbUcd5UwJ33rV9kz6jpt2Tb0RRJjWey5A0TWRltl2gprjXZtizsl5vUvFN_1oAnrU16O-HvX1qF8AeQRc-eoQXNLZBjdY14dULHQfw3_oL2W8XzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vector Invariants ofU2(Fp) : A Proof of a Conjecture of Richman</title><source>Elsevier</source><creator>Campbell, H.E.A. ; Hughes, I.P.</creator><creatorcontrib>Campbell, H.E.A. ; Hughes, I.P.</creatorcontrib><description>In this paper we prove a conjecture of D. R. Richman concerning the vector invariants of the groupU2(Fp). LetVbe a vector space of dimension 2 with basisx,yover the fieldFpand letFp[x, y] be the symmetric algebra ofVoverFp. Ifσdenotes a generator ofU2(Fp) then we may assumeσ(x)=xandσ(y)=x+y. LetAnbe the symmetric algebra ofV⊕n. We obtain an automorphism ofAnof order p by using the diagonal action ofσextended to the whole ofAn. The subalgebra of polynomials left invariant by this action is called the ring of vector invariants ofU2(Fp). Richman conjectured that these rings of invariants have certain sets of generators and gave a proof in the casep=2. We prove his conjecture for all primes.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1006/aima.1996.1590</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Advances in mathematics (New York. 1965), 1997-03, Vol.126 (1), p.1-20</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3</citedby><cites>FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Campbell, H.E.A.</creatorcontrib><creatorcontrib>Hughes, I.P.</creatorcontrib><title>Vector Invariants ofU2(Fp) : A Proof of a Conjecture of Richman</title><title>Advances in mathematics (New York. 1965)</title><description>In this paper we prove a conjecture of D. R. Richman concerning the vector invariants of the groupU2(Fp). LetVbe a vector space of dimension 2 with basisx,yover the fieldFpand letFp[x, y] be the symmetric algebra ofVoverFp. Ifσdenotes a generator ofU2(Fp) then we may assumeσ(x)=xandσ(y)=x+y. LetAnbe the symmetric algebra ofV⊕n. We obtain an automorphism ofAnof order p by using the diagonal action ofσextended to the whole ofAn. The subalgebra of polynomials left invariant by this action is called the ring of vector invariants ofU2(Fp). Richman conjectured that these rings of invariants have certain sets of generators and gave a proof in the casep=2. We prove his conjecture for all primes.</description><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1j0FLAzEQRoMouFavnnPUw66TbLJJvEgpVgsFRazXkGYTTLGbktSC_94s9epp-IbvDfMQuibQEIDuzoStaYhSXUO4ghNUEVBQU5D0FFUAQGopQJ6ji5w3JSpGVIUePpzdx4QXw8GkYIZ9xtGv6M18d4vv8RS_phh9WWGDZ3HYlPJ3cmN-C_Zza4ZLdObNV3ZXf3OCVvPH99lzvXx5Wsymy9pSRqBWvTdE2U4wbg30VlLHbUcd5UwJ33rV9kz6jpt2Tb0RRJjWey5A0TWRltl2gprjXZtizsl5vUvFN_1oAnrU16O-HvX1qF8AeQRc-eoQXNLZBjdY14dULHQfw3_oL2W8XzU</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Campbell, H.E.A.</creator><creator>Hughes, I.P.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Vector Invariants ofU2(Fp) : A Proof of a Conjecture of Richman</title><author>Campbell, H.E.A. ; Hughes, I.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, H.E.A.</creatorcontrib><creatorcontrib>Hughes, I.P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, H.E.A.</au><au>Hughes, I.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector Invariants ofU2(Fp) : A Proof of a Conjecture of Richman</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>126</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>In this paper we prove a conjecture of D. R. Richman concerning the vector invariants of the groupU2(Fp). LetVbe a vector space of dimension 2 with basisx,yover the fieldFpand letFp[x, y] be the symmetric algebra ofVoverFp. Ifσdenotes a generator ofU2(Fp) then we may assumeσ(x)=xandσ(y)=x+y. LetAnbe the symmetric algebra ofV⊕n. We obtain an automorphism ofAnof order p by using the diagonal action ofσextended to the whole ofAn. The subalgebra of polynomials left invariant by this action is called the ring of vector invariants ofU2(Fp). Richman conjectured that these rings of invariants have certain sets of generators and gave a proof in the casep=2. We prove his conjecture for all primes.</abstract><pub>Elsevier Inc</pub><doi>10.1006/aima.1996.1590</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 1997-03, Vol.126 (1), p.1-20
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1006_aima_1996_1590
source Elsevier
title Vector Invariants ofU2(Fp) : A Proof of a Conjecture of Richman
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20Invariants%20ofU2(Fp)%20:%20A%20Proof%20of%20a%20Conjecture%20of%20Richman&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Campbell,%20H.E.A.&rft.date=1997-03-01&rft.volume=126&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1006/aima.1996.1590&rft_dat=%3Celsevier_cross%3ES000187089691590X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2410-9dfa19c6745ca0dc82e5c62e25497f3f93d48f65a3b2fa717a3ff57092b18c4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true