Loading…

A Remark on Uniformly Symmetrizable Systems

We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) 2001-03, Vol.158 (1), p.18-25
Main Authors: D'Ancona, Piero, Spagnolo, Sergio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843
cites cdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843
container_end_page 25
container_issue 1
container_start_page 18
container_title Advances in mathematics (New York. 1965)
container_volume 158
creator D'Ancona, Piero
Spagnolo, Sergio
description We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.
doi_str_mv 10.1006/aima.2000.1957
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aima_2000_1957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870800919571</els_id><sourcerecordid>S0001870800919571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</originalsourceid><addsrcrecordid>eNp1j0tLxDAQgIMoWFevnnuX1pn0kcxxWdQVFgR1z6GPKUT7kKQI9debsl49Dd_AN8wnxC1CigDlfWWHKpUAAalQZyJCIEgkaHkuorDGRCvQl-LK-4-AlCNF4m4bv_JQuc94GuPjaLvJDf0Svy3DwLOzP1XdcyA_8-CvxUVX9Z5v_uZGHB8f3nf75PDy9LzbHpImk-WcICOxLPJSoSKdESlsNTPWVCKRhErnrLJWAZGWtS5VkcumICi7GrnQebYR6elu4ybvHXfmy4U2txgEs6aaNdWsqWZNDYI-CRy--rbsjG8sjw231nEzm3ay_6m_oRRX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Remark on Uniformly Symmetrizable Systems</title><source>ScienceDirect Journals</source><creator>D'Ancona, Piero ; Spagnolo, Sergio</creator><creatorcontrib>D'Ancona, Piero ; Spagnolo, Sergio</creatorcontrib><description>We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1006/aima.2000.1957</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cauchy problem ; Linear hyperbolic systems</subject><ispartof>Advances in mathematics (New York. 1965), 2001-03, Vol.158 (1), p.18-25</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</citedby><cites>FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>D'Ancona, Piero</creatorcontrib><creatorcontrib>Spagnolo, Sergio</creatorcontrib><title>A Remark on Uniformly Symmetrizable Systems</title><title>Advances in mathematics (New York. 1965)</title><description>We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.</description><subject>Cauchy problem</subject><subject>Linear hyperbolic systems</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxDAQgIMoWFevnnuX1pn0kcxxWdQVFgR1z6GPKUT7kKQI9debsl49Dd_AN8wnxC1CigDlfWWHKpUAAalQZyJCIEgkaHkuorDGRCvQl-LK-4-AlCNF4m4bv_JQuc94GuPjaLvJDf0Svy3DwLOzP1XdcyA_8-CvxUVX9Z5v_uZGHB8f3nf75PDy9LzbHpImk-WcICOxLPJSoSKdESlsNTPWVCKRhErnrLJWAZGWtS5VkcumICi7GrnQebYR6elu4ybvHXfmy4U2txgEs6aaNdWsqWZNDYI-CRy--rbsjG8sjw231nEzm3ay_6m_oRRX_Q</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>D'Ancona, Piero</creator><creator>Spagnolo, Sergio</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010301</creationdate><title>A Remark on Uniformly Symmetrizable Systems</title><author>D'Ancona, Piero ; Spagnolo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cauchy problem</topic><topic>Linear hyperbolic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Ancona, Piero</creatorcontrib><creatorcontrib>Spagnolo, Sergio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Ancona, Piero</au><au>Spagnolo, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Remark on Uniformly Symmetrizable Systems</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>158</volume><issue>1</issue><spage>18</spage><epage>25</epage><pages>18-25</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.</abstract><pub>Elsevier Inc</pub><doi>10.1006/aima.2000.1957</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2001-03, Vol.158 (1), p.18-25
issn 0001-8708
1090-2082
language eng
recordid cdi_crossref_primary_10_1006_aima_2000_1957
source ScienceDirect Journals
subjects Cauchy problem
Linear hyperbolic systems
title A Remark on Uniformly Symmetrizable Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Remark%20on%20Uniformly%20Symmetrizable%20Systems&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=D'Ancona,%20Piero&rft.date=2001-03-01&rft.volume=158&rft.issue=1&rft.spage=18&rft.epage=25&rft.pages=18-25&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1006/aima.2000.1957&rft_dat=%3Celsevier_cross%3ES0001870800919571%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true