Loading…
A Remark on Uniformly Symmetrizable Systems
We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.
Saved in:
Published in: | Advances in mathematics (New York. 1965) 2001-03, Vol.158 (1), p.18-25 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843 |
container_end_page | 25 |
container_issue | 1 |
container_start_page | 18 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 158 |
creator | D'Ancona, Piero Spagnolo, Sergio |
description | We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞. |
doi_str_mv | 10.1006/aima.2000.1957 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_aima_2000_1957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870800919571</els_id><sourcerecordid>S0001870800919571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</originalsourceid><addsrcrecordid>eNp1j0tLxDAQgIMoWFevnnuX1pn0kcxxWdQVFgR1z6GPKUT7kKQI9debsl49Dd_AN8wnxC1CigDlfWWHKpUAAalQZyJCIEgkaHkuorDGRCvQl-LK-4-AlCNF4m4bv_JQuc94GuPjaLvJDf0Svy3DwLOzP1XdcyA_8-CvxUVX9Z5v_uZGHB8f3nf75PDy9LzbHpImk-WcICOxLPJSoSKdESlsNTPWVCKRhErnrLJWAZGWtS5VkcumICi7GrnQebYR6elu4ybvHXfmy4U2txgEs6aaNdWsqWZNDYI-CRy--rbsjG8sjw231nEzm3ay_6m_oRRX_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Remark on Uniformly Symmetrizable Systems</title><source>ScienceDirect Journals</source><creator>D'Ancona, Piero ; Spagnolo, Sergio</creator><creatorcontrib>D'Ancona, Piero ; Spagnolo, Sergio</creatorcontrib><description>We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1006/aima.2000.1957</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cauchy problem ; Linear hyperbolic systems</subject><ispartof>Advances in mathematics (New York. 1965), 2001-03, Vol.158 (1), p.18-25</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</citedby><cites>FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>D'Ancona, Piero</creatorcontrib><creatorcontrib>Spagnolo, Sergio</creatorcontrib><title>A Remark on Uniformly Symmetrizable Systems</title><title>Advances in mathematics (New York. 1965)</title><description>We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.</description><subject>Cauchy problem</subject><subject>Linear hyperbolic systems</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxDAQgIMoWFevnnuX1pn0kcxxWdQVFgR1z6GPKUT7kKQI9debsl49Dd_AN8wnxC1CigDlfWWHKpUAAalQZyJCIEgkaHkuorDGRCvQl-LK-4-AlCNF4m4bv_JQuc94GuPjaLvJDf0Svy3DwLOzP1XdcyA_8-CvxUVX9Z5v_uZGHB8f3nf75PDy9LzbHpImk-WcICOxLPJSoSKdESlsNTPWVCKRhErnrLJWAZGWtS5VkcumICi7GrnQebYR6elu4ybvHXfmy4U2txgEs6aaNdWsqWZNDYI-CRy--rbsjG8sjw231nEzm3ay_6m_oRRX_Q</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>D'Ancona, Piero</creator><creator>Spagnolo, Sergio</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010301</creationdate><title>A Remark on Uniformly Symmetrizable Systems</title><author>D'Ancona, Piero ; Spagnolo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cauchy problem</topic><topic>Linear hyperbolic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Ancona, Piero</creatorcontrib><creatorcontrib>Spagnolo, Sergio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Ancona, Piero</au><au>Spagnolo, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Remark on Uniformly Symmetrizable Systems</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>158</volume><issue>1</issue><spage>18</spage><epage>25</epage><pages>18-25</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We prove that any first order system, in one space variable, with analytic coefficients depending only on time, is smoothly symmetrizable if and only if it is uniformly symmetrizable. Thus any one of these conditions is sufficient for the well posedness in C∞.</abstract><pub>Elsevier Inc</pub><doi>10.1006/aima.2000.1957</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2001-03, Vol.158 (1), p.18-25 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_crossref_primary_10_1006_aima_2000_1957 |
source | ScienceDirect Journals |
subjects | Cauchy problem Linear hyperbolic systems |
title | A Remark on Uniformly Symmetrizable Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Remark%20on%20Uniformly%20Symmetrizable%20Systems&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=D'Ancona,%20Piero&rft.date=2001-03-01&rft.volume=158&rft.issue=1&rft.spage=18&rft.epage=25&rft.pages=18-25&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1006/aima.2000.1957&rft_dat=%3Celsevier_cross%3ES0001870800919571%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-1e19e25467179839971d8ee1b9619920a84e73d709982b867542c5906fb1e5843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |