Loading…

Curves with Many Points and Configurations of Hyperplanes over Finite Fields

We establish a correspondence between a class of Kummer extensions of the rational function field and configurations of hyperplanes in an affine space. Using this correspondence, we obtain explicit curves over finite fields with many rational points. Some of our examples almost attain the Oesterlé b...

Full description

Saved in:
Bibliographic Details
Published in:Finite fields and their applications 1999-10, Vol.5 (4), p.436-449
Main Authors: Özbudak, Ferruh, Stichtenoth, Henning
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53
cites cdi_FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53
container_end_page 449
container_issue 4
container_start_page 436
container_title Finite fields and their applications
container_volume 5
creator Özbudak, Ferruh
Stichtenoth, Henning
description We establish a correspondence between a class of Kummer extensions of the rational function field and configurations of hyperplanes in an affine space. Using this correspondence, we obtain explicit curves over finite fields with many rational points. Some of our examples almost attain the Oesterlé bound.
doi_str_mv 10.1006/ffta.1999.0262
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_ffta_1999_0262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1071579799902629</els_id><sourcerecordid>S1071579799902629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwMvsPJPgjjusRRZQiFcEAs-XYz2BUnMp2g_rvSVRWhqf7lnN1dRC6paSmhLR33hdTU6VUTVjLztCCEkUq1rTifP4lrYRU8hJd5fxFCKWCrxZo2x3SCBn_hPKJn0084tchxJKxiQ53Q_Th45BMCUPMePB4c9xD2u9MnJBhhITXIYYCU8DO5Wt04c0uw81fLtH7-uGt21Tbl8en7n5bWc7aUhlJhReMN1ZYpTybrukVgCOucV5yIEYy3rdE9p5T4zmTfd9wZr1dWWMEX6L61GvTkHMCr_cpfJt01JTo2YWeXejZhZ5dTMDqBMC0agyQdLYBogUXEtii3RD-Q38BtYpm6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Curves with Many Points and Configurations of Hyperplanes over Finite Fields</title><source>ScienceDirect Journals</source><creator>Özbudak, Ferruh ; Stichtenoth, Henning</creator><creatorcontrib>Özbudak, Ferruh ; Stichtenoth, Henning</creatorcontrib><description>We establish a correspondence between a class of Kummer extensions of the rational function field and configurations of hyperplanes in an affine space. Using this correspondence, we obtain explicit curves over finite fields with many rational points. Some of our examples almost attain the Oesterlé bound.</description><identifier>ISSN: 1071-5797</identifier><identifier>EISSN: 1090-2465</identifier><identifier>DOI: 10.1006/ffta.1999.0262</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Finite fields and their applications, 1999-10, Vol.5 (4), p.436-449</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53</citedby><cites>FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Özbudak, Ferruh</creatorcontrib><creatorcontrib>Stichtenoth, Henning</creatorcontrib><title>Curves with Many Points and Configurations of Hyperplanes over Finite Fields</title><title>Finite fields and their applications</title><description>We establish a correspondence between a class of Kummer extensions of the rational function field and configurations of hyperplanes in an affine space. Using this correspondence, we obtain explicit curves over finite fields with many rational points. Some of our examples almost attain the Oesterlé bound.</description><issn>1071-5797</issn><issn>1090-2465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwMvsPJPgjjusRRZQiFcEAs-XYz2BUnMp2g_rvSVRWhqf7lnN1dRC6paSmhLR33hdTU6VUTVjLztCCEkUq1rTifP4lrYRU8hJd5fxFCKWCrxZo2x3SCBn_hPKJn0084tchxJKxiQ53Q_Th45BMCUPMePB4c9xD2u9MnJBhhITXIYYCU8DO5Wt04c0uw81fLtH7-uGt21Tbl8en7n5bWc7aUhlJhReMN1ZYpTybrukVgCOucV5yIEYy3rdE9p5T4zmTfd9wZr1dWWMEX6L61GvTkHMCr_cpfJt01JTo2YWeXejZhZ5dTMDqBMC0agyQdLYBogUXEtii3RD-Q38BtYpm6Q</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Özbudak, Ferruh</creator><creator>Stichtenoth, Henning</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991001</creationdate><title>Curves with Many Points and Configurations of Hyperplanes over Finite Fields</title><author>Özbudak, Ferruh ; Stichtenoth, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özbudak, Ferruh</creatorcontrib><creatorcontrib>Stichtenoth, Henning</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Finite fields and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özbudak, Ferruh</au><au>Stichtenoth, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curves with Many Points and Configurations of Hyperplanes over Finite Fields</atitle><jtitle>Finite fields and their applications</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>5</volume><issue>4</issue><spage>436</spage><epage>449</epage><pages>436-449</pages><issn>1071-5797</issn><eissn>1090-2465</eissn><abstract>We establish a correspondence between a class of Kummer extensions of the rational function field and configurations of hyperplanes in an affine space. Using this correspondence, we obtain explicit curves over finite fields with many rational points. Some of our examples almost attain the Oesterlé bound.</abstract><pub>Elsevier Inc</pub><doi>10.1006/ffta.1999.0262</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1071-5797
ispartof Finite fields and their applications, 1999-10, Vol.5 (4), p.436-449
issn 1071-5797
1090-2465
language eng
recordid cdi_crossref_primary_10_1006_ffta_1999_0262
source ScienceDirect Journals
title Curves with Many Points and Configurations of Hyperplanes over Finite Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curves%20with%20Many%20Points%20and%20Configurations%20of%20Hyperplanes%20over%20Finite%20Fields&rft.jtitle=Finite%20fields%20and%20their%20applications&rft.au=%C3%96zbudak,%20Ferruh&rft.date=1999-10-01&rft.volume=5&rft.issue=4&rft.spage=436&rft.epage=449&rft.pages=436-449&rft.issn=1071-5797&rft.eissn=1090-2465&rft_id=info:doi/10.1006/ffta.1999.0262&rft_dat=%3Celsevier_cross%3ES1071579799902629%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-a715f5234c5c99f299f4b9eed0d4df73e0a723b607bf31af327bb432cfc8caa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true