Loading…
On the Normalizer Problem
In this paper the normalizer problem of an integral group ring of an arbitrary group G is investigated. It is shown that any element of the normalizer NU1(G) of G in the group of normalized units U1(ZG) is determined by a finite normal subgroup. This reduction to finite normal subgroups implies that...
Saved in:
Published in: | Journal of algebra 2002-01, Vol.247 (1), p.24-36 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the normalizer problem of an integral group ring of an arbitrary group G is investigated. It is shown that any element of the normalizer NU1(G) of G in the group of normalized units U1(ZG) is determined by a finite normal subgroup. This reduction to finite normal subgroups implies that the normalizer property holds for many classes of (infinite) groups, such as groups without non-trivial 2-torsion, torsion groups with a normal Sylow 2-subgroup, and locally nilpotent groups. Further it is shown that the commutator of NU1(G) equals G′ and NU1(G)/G is finitely generated if the torsion subgroup of the finite conjugacy group of G is finite. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1006/jabr.2001.8724 |