Loading…

Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications

In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion env...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebra 2001-09, Vol.243 (2), p.615-630
Main Authors: Aldrich, S.Tempest, Enochs, Edgar E, Garcı́a Rozas, J.R, Oyonarte, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483
cites cdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483
container_end_page 630
container_issue 2
container_start_page 615
container_title Journal of algebra
container_volume 243
creator Aldrich, S.Tempest
Enochs, Edgar E
Garcı́a Rozas, J.R
Oyonarte, Luis
description In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.
doi_str_mv 10.1006/jabr.2001.8821
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_2001_8821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869301988210</els_id><sourcerecordid>S0021869301988210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKdXz_kDrV_SNs28jbJNYeBFQfAQ0vSLy-yakpSp_96W7erpew_f8_LyEHLPIGUA4mGv65ByAJZKydkFmTFYQMKFeL8kMwDOEikW2TW5iXE_frEilzPyUfkjhkh119BVd8TW9xip6-gm-GGHXePQfNFKD_jpg8P4SNetHuiZ8nZMh77FnxH6dsOOLvu-dUYPznfxllxZ3Ua8O985eVuvXqunZPuyea6W28RkXAxJXvIMdFkaANugzAsOpm6s5KIpbcGZLHRd5pYVUhvJMqitEGWDOUMLeZnLbE7SU68JPsaAVvXBHXT4VQzUpEZNatSkRk1qRkCeABxXHR0GFY3DzmDjAppBNd79h_4BNDRrMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Aldrich, S.Tempest ; Enochs, Edgar E ; Garcı́a Rozas, J.R ; Oyonarte, Luis</creator><creatorcontrib>Aldrich, S.Tempest ; Enochs, Edgar E ; Garcı́a Rozas, J.R ; Oyonarte, Luis</creatorcontrib><description>In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.2001.8821</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cotorsion theory cogenerated by a set ; cover ; envelope ; flat complex of modules</subject><ispartof>Journal of algebra, 2001-09, Vol.243 (2), p.615-630</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</citedby><cites>FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aldrich, S.Tempest</creatorcontrib><creatorcontrib>Enochs, Edgar E</creatorcontrib><creatorcontrib>Garcı́a Rozas, J.R</creatorcontrib><creatorcontrib>Oyonarte, Luis</creatorcontrib><title>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</title><title>Journal of algebra</title><description>In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.</description><subject>cotorsion theory cogenerated by a set</subject><subject>cover</subject><subject>envelope</subject><subject>flat complex of modules</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKdXz_kDrV_SNs28jbJNYeBFQfAQ0vSLy-yakpSp_96W7erpew_f8_LyEHLPIGUA4mGv65ByAJZKydkFmTFYQMKFeL8kMwDOEikW2TW5iXE_frEilzPyUfkjhkh119BVd8TW9xip6-gm-GGHXePQfNFKD_jpg8P4SNetHuiZ8nZMh77FnxH6dsOOLvu-dUYPznfxllxZ3Ua8O985eVuvXqunZPuyea6W28RkXAxJXvIMdFkaANugzAsOpm6s5KIpbcGZLHRd5pYVUhvJMqitEGWDOUMLeZnLbE7SU68JPsaAVvXBHXT4VQzUpEZNatSkRk1qRkCeABxXHR0GFY3DzmDjAppBNd79h_4BNDRrMg</recordid><startdate>20010915</startdate><enddate>20010915</enddate><creator>Aldrich, S.Tempest</creator><creator>Enochs, Edgar E</creator><creator>Garcı́a Rozas, J.R</creator><creator>Oyonarte, Luis</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010915</creationdate><title>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</title><author>Aldrich, S.Tempest ; Enochs, Edgar E ; Garcı́a Rozas, J.R ; Oyonarte, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>cotorsion theory cogenerated by a set</topic><topic>cover</topic><topic>envelope</topic><topic>flat complex of modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldrich, S.Tempest</creatorcontrib><creatorcontrib>Enochs, Edgar E</creatorcontrib><creatorcontrib>Garcı́a Rozas, J.R</creatorcontrib><creatorcontrib>Oyonarte, Luis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldrich, S.Tempest</au><au>Enochs, Edgar E</au><au>Garcı́a Rozas, J.R</au><au>Oyonarte, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</atitle><jtitle>Journal of algebra</jtitle><date>2001-09-15</date><risdate>2001</risdate><volume>243</volume><issue>2</issue><spage>615</spage><epage>630</epage><pages>615-630</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.2001.8821</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 2001-09, Vol.243 (2), p.615-630
issn 0021-8693
1090-266X
language eng
recordid cdi_crossref_primary_10_1006_jabr_2001_8821
source ScienceDirect Freedom Collection 2022-2024
subjects cotorsion theory cogenerated by a set
cover
envelope
flat complex of modules
title Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covers%20and%20Envelopes%20in%20Grothendieck%20Categories:%20Flat%20Covers%20of%20Complexes%20with%20Applications&rft.jtitle=Journal%20of%20algebra&rft.au=Aldrich,%20S.Tempest&rft.date=2001-09-15&rft.volume=243&rft.issue=2&rft.spage=615&rft.epage=630&rft.pages=615-630&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.2001.8821&rft_dat=%3Celsevier_cross%3ES0021869301988210%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true