Loading…
Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications
In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion env...
Saved in:
Published in: | Journal of algebra 2001-09, Vol.243 (2), p.615-630 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483 |
container_end_page | 630 |
container_issue | 2 |
container_start_page | 615 |
container_title | Journal of algebra |
container_volume | 243 |
creator | Aldrich, S.Tempest Enochs, Edgar E Garcı́a Rozas, J.R Oyonarte, Luis |
description | In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes. |
doi_str_mv | 10.1006/jabr.2001.8821 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jabr_2001_8821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869301988210</els_id><sourcerecordid>S0021869301988210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKdXz_kDrV_SNs28jbJNYeBFQfAQ0vSLy-yakpSp_96W7erpew_f8_LyEHLPIGUA4mGv65ByAJZKydkFmTFYQMKFeL8kMwDOEikW2TW5iXE_frEilzPyUfkjhkh119BVd8TW9xip6-gm-GGHXePQfNFKD_jpg8P4SNetHuiZ8nZMh77FnxH6dsOOLvu-dUYPznfxllxZ3Ua8O985eVuvXqunZPuyea6W28RkXAxJXvIMdFkaANugzAsOpm6s5KIpbcGZLHRd5pYVUhvJMqitEGWDOUMLeZnLbE7SU68JPsaAVvXBHXT4VQzUpEZNatSkRk1qRkCeABxXHR0GFY3DzmDjAppBNd79h_4BNDRrMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Aldrich, S.Tempest ; Enochs, Edgar E ; Garcı́a Rozas, J.R ; Oyonarte, Luis</creator><creatorcontrib>Aldrich, S.Tempest ; Enochs, Edgar E ; Garcı́a Rozas, J.R ; Oyonarte, Luis</creatorcontrib><description>In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.2001.8821</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cotorsion theory cogenerated by a set ; cover ; envelope ; flat complex of modules</subject><ispartof>Journal of algebra, 2001-09, Vol.243 (2), p.615-630</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</citedby><cites>FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aldrich, S.Tempest</creatorcontrib><creatorcontrib>Enochs, Edgar E</creatorcontrib><creatorcontrib>Garcı́a Rozas, J.R</creatorcontrib><creatorcontrib>Oyonarte, Luis</creatorcontrib><title>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</title><title>Journal of algebra</title><description>In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.</description><subject>cotorsion theory cogenerated by a set</subject><subject>cover</subject><subject>envelope</subject><subject>flat complex of modules</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKdXz_kDrV_SNs28jbJNYeBFQfAQ0vSLy-yakpSp_96W7erpew_f8_LyEHLPIGUA4mGv65ByAJZKydkFmTFYQMKFeL8kMwDOEikW2TW5iXE_frEilzPyUfkjhkh119BVd8TW9xip6-gm-GGHXePQfNFKD_jpg8P4SNetHuiZ8nZMh77FnxH6dsOOLvu-dUYPznfxllxZ3Ua8O985eVuvXqunZPuyea6W28RkXAxJXvIMdFkaANugzAsOpm6s5KIpbcGZLHRd5pYVUhvJMqitEGWDOUMLeZnLbE7SU68JPsaAVvXBHXT4VQzUpEZNatSkRk1qRkCeABxXHR0GFY3DzmDjAppBNd79h_4BNDRrMg</recordid><startdate>20010915</startdate><enddate>20010915</enddate><creator>Aldrich, S.Tempest</creator><creator>Enochs, Edgar E</creator><creator>Garcı́a Rozas, J.R</creator><creator>Oyonarte, Luis</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010915</creationdate><title>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</title><author>Aldrich, S.Tempest ; Enochs, Edgar E ; Garcı́a Rozas, J.R ; Oyonarte, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>cotorsion theory cogenerated by a set</topic><topic>cover</topic><topic>envelope</topic><topic>flat complex of modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldrich, S.Tempest</creatorcontrib><creatorcontrib>Enochs, Edgar E</creatorcontrib><creatorcontrib>Garcı́a Rozas, J.R</creatorcontrib><creatorcontrib>Oyonarte, Luis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldrich, S.Tempest</au><au>Enochs, Edgar E</au><au>Garcı́a Rozas, J.R</au><au>Oyonarte, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications</atitle><jtitle>Journal of algebra</jtitle><date>2001-09-15</date><risdate>2001</risdate><volume>243</volume><issue>2</issue><spage>615</spage><epage>630</epage><pages>615-630</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of F-covers and envelopes to the study of some properties of the class F. We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra201 (1998), 86–102) and finishes the problem of the existence of flat covers of complexes.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.2001.8821</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8693 |
ispartof | Journal of algebra, 2001-09, Vol.243 (2), p.615-630 |
issn | 0021-8693 1090-266X |
language | eng |
recordid | cdi_crossref_primary_10_1006_jabr_2001_8821 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | cotorsion theory cogenerated by a set cover envelope flat complex of modules |
title | Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covers%20and%20Envelopes%20in%20Grothendieck%20Categories:%20Flat%20Covers%20of%20Complexes%20with%20Applications&rft.jtitle=Journal%20of%20algebra&rft.au=Aldrich,%20S.Tempest&rft.date=2001-09-15&rft.volume=243&rft.issue=2&rft.spage=615&rft.epage=630&rft.pages=615-630&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.2001.8821&rft_dat=%3Celsevier_cross%3ES0021869301988210%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-47230a77c00fde84520cbdf826d7f52185ab74f158ac8130bf667de41ef047483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |