Loading…

Bivariate Hermite Interpolation and Numerical Curves

In this paper, Hermite interpolation by bivariate algebraic polynomials of total degree ⩽nis considered. The interpolation parameters are the values of a function and its partial derivatives up to some ordernν−1 at the nodeszν=(xν, yν),ν=1, …, s, wherenνis the multiplicity ofzν. The sequence N={n1, ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of approximation theory 1996-06, Vol.85 (3), p.297-317
Main Authors: Gevorgian, Hovik V, Hakopian, Hakop A, Sahakian, Artur A
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-889fde4a494088708d254ee2d25d34c72ac181dfb809e87ed61e6daef0414a5c3
cites
container_end_page 317
container_issue 3
container_start_page 297
container_title Journal of approximation theory
container_volume 85
creator Gevorgian, Hovik V
Hakopian, Hakop A
Sahakian, Artur A
description In this paper, Hermite interpolation by bivariate algebraic polynomials of total degree ⩽nis considered. The interpolation parameters are the values of a function and its partial derivatives up to some ordernν−1 at the nodeszν=(xν, yν),ν=1, …, s, wherenνis the multiplicity ofzν. The sequence N={n1, …, ns; n} of multiplicities associated with the degree of interpolating polynomials is investigated. Some results of the paper were announced in [GHS93].
doi_str_mv 10.1006/jath.1996.0044
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jath_1996_0044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021904596900441</els_id><sourcerecordid>S0021904596900441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-889fde4a494088708d254ee2d25d34c72ac181dfb809e87ed61e6daef0414a5c3</originalsourceid><addsrcrecordid>eNp1j71OwzAURi0EEqGwMucFEu5NnMQeIQJaqYIFZsvYN8JVfirbjcTbk6isTGc6n77D2D1CjgD1w0HH7xylrHMAzi9YgiDrDHgJlywBKDCTwKtrdhPCAQCxqjBh_MnN2jsdKd2SH9zC3RjJH6deRzeNqR5t-nYayDuj-7Q9-ZnCLbvqdB_o7o8b9vny_NFus_3766593GemLOqYCSE7S1xzyUGIBoQtKk5ULLAlN02hDQq03ZcASaIhWyPVVlMHHLmuTLlh-XnX-CkET506ejdo_6MQ1Nqs1ma1Nqu1eRHEWaDl1ezIq2AcjYas82SispP7T_0FwbhdoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bivariate Hermite Interpolation and Numerical Curves</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gevorgian, Hovik V ; Hakopian, Hakop A ; Sahakian, Artur A</creator><creatorcontrib>Gevorgian, Hovik V ; Hakopian, Hakop A ; Sahakian, Artur A</creatorcontrib><description>In this paper, Hermite interpolation by bivariate algebraic polynomials of total degree ⩽nis considered. The interpolation parameters are the values of a function and its partial derivatives up to some ordernν−1 at the nodeszν=(xν, yν),ν=1, …, s, wherenνis the multiplicity ofzν. The sequence N={n1, …, ns; n} of multiplicities associated with the degree of interpolating polynomials is investigated. Some results of the paper were announced in [GHS93].</description><identifier>ISSN: 0021-9045</identifier><identifier>EISSN: 1096-0430</identifier><identifier>DOI: 10.1006/jath.1996.0044</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of approximation theory, 1996-06, Vol.85 (3), p.297-317</ispartof><rights>1996 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-889fde4a494088708d254ee2d25d34c72ac181dfb809e87ed61e6daef0414a5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gevorgian, Hovik V</creatorcontrib><creatorcontrib>Hakopian, Hakop A</creatorcontrib><creatorcontrib>Sahakian, Artur A</creatorcontrib><title>Bivariate Hermite Interpolation and Numerical Curves</title><title>Journal of approximation theory</title><description>In this paper, Hermite interpolation by bivariate algebraic polynomials of total degree ⩽nis considered. The interpolation parameters are the values of a function and its partial derivatives up to some ordernν−1 at the nodeszν=(xν, yν),ν=1, …, s, wherenνis the multiplicity ofzν. The sequence N={n1, …, ns; n} of multiplicities associated with the degree of interpolating polynomials is investigated. Some results of the paper were announced in [GHS93].</description><issn>0021-9045</issn><issn>1096-0430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1j71OwzAURi0EEqGwMucFEu5NnMQeIQJaqYIFZsvYN8JVfirbjcTbk6isTGc6n77D2D1CjgD1w0HH7xylrHMAzi9YgiDrDHgJlywBKDCTwKtrdhPCAQCxqjBh_MnN2jsdKd2SH9zC3RjJH6deRzeNqR5t-nYayDuj-7Q9-ZnCLbvqdB_o7o8b9vny_NFus_3766593GemLOqYCSE7S1xzyUGIBoQtKk5ULLAlN02hDQq03ZcASaIhWyPVVlMHHLmuTLlh-XnX-CkET506ejdo_6MQ1Nqs1ma1Nqu1eRHEWaDl1ezIq2AcjYas82SispP7T_0FwbhdoA</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Gevorgian, Hovik V</creator><creator>Hakopian, Hakop A</creator><creator>Sahakian, Artur A</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960601</creationdate><title>Bivariate Hermite Interpolation and Numerical Curves</title><author>Gevorgian, Hovik V ; Hakopian, Hakop A ; Sahakian, Artur A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-889fde4a494088708d254ee2d25d34c72ac181dfb809e87ed61e6daef0414a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gevorgian, Hovik V</creatorcontrib><creatorcontrib>Hakopian, Hakop A</creatorcontrib><creatorcontrib>Sahakian, Artur A</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of approximation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gevorgian, Hovik V</au><au>Hakopian, Hakop A</au><au>Sahakian, Artur A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate Hermite Interpolation and Numerical Curves</atitle><jtitle>Journal of approximation theory</jtitle><date>1996-06-01</date><risdate>1996</risdate><volume>85</volume><issue>3</issue><spage>297</spage><epage>317</epage><pages>297-317</pages><issn>0021-9045</issn><eissn>1096-0430</eissn><abstract>In this paper, Hermite interpolation by bivariate algebraic polynomials of total degree ⩽nis considered. The interpolation parameters are the values of a function and its partial derivatives up to some ordernν−1 at the nodeszν=(xν, yν),ν=1, …, s, wherenνis the multiplicity ofzν. The sequence N={n1, …, ns; n} of multiplicities associated with the degree of interpolating polynomials is investigated. Some results of the paper were announced in [GHS93].</abstract><pub>Elsevier Inc</pub><doi>10.1006/jath.1996.0044</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9045
ispartof Journal of approximation theory, 1996-06, Vol.85 (3), p.297-317
issn 0021-9045
1096-0430
language eng
recordid cdi_crossref_primary_10_1006_jath_1996_0044
source ScienceDirect Freedom Collection 2022-2024
title Bivariate Hermite Interpolation and Numerical Curves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20Hermite%20Interpolation%20and%20Numerical%20Curves&rft.jtitle=Journal%20of%20approximation%20theory&rft.au=Gevorgian,%20Hovik%20V&rft.date=1996-06-01&rft.volume=85&rft.issue=3&rft.spage=297&rft.epage=317&rft.pages=297-317&rft.issn=0021-9045&rft.eissn=1096-0430&rft_id=info:doi/10.1006/jath.1996.0044&rft_dat=%3Celsevier_cross%3ES0021904596900441%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-889fde4a494088708d254ee2d25d34c72ac181dfb809e87ed61e6daef0414a5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true