Loading…
Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen
The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature...
Saved in:
Published in: | Journal of catalysis 1997-03, Vol.166 (2), p.125-135 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223 |
container_end_page | 135 |
container_issue | 2 |
container_start_page | 125 |
container_title | Journal of catalysis |
container_volume | 166 |
creator | Keller, V. Wehrer, P. Garin, F. Ducros, R. Maire, G. |
description | The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper. |
doi_str_mv | 10.1006/jcat.1997.1516 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcat_1997_1516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951797915165</els_id><sourcerecordid>S0021951797915165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMntgTbDd2LHHUvFRqagSKrPlXOzKbZpUdlqRkf-cREUswC2nk9579_RD6JaSlBIi7jdg2pQqlaeUU3GGRpQokjChsnM0IoTRRHGaX6KrGDeEUMq5HKHPmWlN1bUe8BRaf_RthxuHHw7VFq8O9Tq2tsYzEwpf2ohdE_C02pra4jfbHztfr1M8n6f475jfCa9N6Z23JS46vPzo1ra-RhfOVNHefO8xen96XM1eksXyeT6bLhJgirVJTq0AmDDLHS-FA6L6yQujwLGMZYIVZOIcuExlJCNCSGBccilzxyQQxiZjlJ5yITQxBuv0PvidCZ2mRA8A9QBQDwD1ALA33J0MexPBVC6YGnz8cTGulBR5L5Mnme3LH70NOoK3NdjSBwutLhv_34cv8ZOEtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</title><source>ScienceDirect Journals</source><creator>Keller, V. ; Wehrer, P. ; Garin, F. ; Ducros, R. ; Maire, G.</creator><creatorcontrib>Keller, V. ; Wehrer, P. ; Garin, F. ; Ducros, R. ; Maire, G.</creatorcontrib><description>The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1006/jcat.1997.1516</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 1997-03, Vol.166 (2), p.125-135</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</citedby><cites>FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2599867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Wehrer, P.</creatorcontrib><creatorcontrib>Garin, F.</creatorcontrib><creatorcontrib>Ducros, R.</creatorcontrib><creatorcontrib>Maire, G.</creatorcontrib><title>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</title><title>Journal of catalysis</title><description>The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMntgTbDd2LHHUvFRqagSKrPlXOzKbZpUdlqRkf-cREUswC2nk9579_RD6JaSlBIi7jdg2pQqlaeUU3GGRpQokjChsnM0IoTRRHGaX6KrGDeEUMq5HKHPmWlN1bUe8BRaf_RthxuHHw7VFq8O9Tq2tsYzEwpf2ohdE_C02pra4jfbHztfr1M8n6f475jfCa9N6Z23JS46vPzo1ra-RhfOVNHefO8xen96XM1eksXyeT6bLhJgirVJTq0AmDDLHS-FA6L6yQujwLGMZYIVZOIcuExlJCNCSGBccilzxyQQxiZjlJ5yITQxBuv0PvidCZ2mRA8A9QBQDwD1ALA33J0MexPBVC6YGnz8cTGulBR5L5Mnme3LH70NOoK3NdjSBwutLhv_34cv8ZOEtA</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Keller, V.</creator><creator>Wehrer, P.</creator><creator>Garin, F.</creator><creator>Ducros, R.</creator><creator>Maire, G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</title><author>Keller, V. ; Wehrer, P. ; Garin, F. ; Ducros, R. ; Maire, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Wehrer, P.</creatorcontrib><creatorcontrib>Garin, F.</creatorcontrib><creatorcontrib>Ducros, R.</creatorcontrib><creatorcontrib>Maire, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, V.</au><au>Wehrer, P.</au><au>Garin, F.</au><au>Ducros, R.</au><au>Maire, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</atitle><jtitle>Journal of catalysis</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>166</volume><issue>2</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/jcat.1997.1516</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9517 |
ispartof | Journal of catalysis, 1997-03, Vol.166 (2), p.125-135 |
issn | 0021-9517 1090-2694 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jcat_1997_1516 |
source | ScienceDirect Journals |
subjects | Catalysis Catalysts: preparations and properties Chemistry Exact sciences and technology General and physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Activity%20of%20Bulk%20Tungsten%20Carbides%20for%20Alkane%20Reforming.%20II.%20Catalytic%20Activity%20of%20Tungsten%20Carbides%20Modified%20by%20Oxygen&rft.jtitle=Journal%20of%20catalysis&rft.au=Keller,%20V.&rft.date=1997-03-01&rft.volume=166&rft.issue=2&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1006/jcat.1997.1516&rft_dat=%3Celsevier_cross%3ES0021951797915165%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |