Loading…

Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen

The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature...

Full description

Saved in:
Bibliographic Details
Published in:Journal of catalysis 1997-03, Vol.166 (2), p.125-135
Main Authors: Keller, V., Wehrer, P., Garin, F., Ducros, R., Maire, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223
cites cdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223
container_end_page 135
container_issue 2
container_start_page 125
container_title Journal of catalysis
container_volume 166
creator Keller, V.
Wehrer, P.
Garin, F.
Ducros, R.
Maire, G.
description The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.
doi_str_mv 10.1006/jcat.1997.1516
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcat_1997_1516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951797915165</els_id><sourcerecordid>S0021951797915165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwMntgTbDd2LHHUvFRqagSKrPlXOzKbZpUdlqRkf-cREUswC2nk9579_RD6JaSlBIi7jdg2pQqlaeUU3GGRpQokjChsnM0IoTRRHGaX6KrGDeEUMq5HKHPmWlN1bUe8BRaf_RthxuHHw7VFq8O9Tq2tsYzEwpf2ohdE_C02pra4jfbHztfr1M8n6f475jfCa9N6Z23JS46vPzo1ra-RhfOVNHefO8xen96XM1eksXyeT6bLhJgirVJTq0AmDDLHS-FA6L6yQujwLGMZYIVZOIcuExlJCNCSGBccilzxyQQxiZjlJ5yITQxBuv0PvidCZ2mRA8A9QBQDwD1ALA33J0MexPBVC6YGnz8cTGulBR5L5Mnme3LH70NOoK3NdjSBwutLhv_34cv8ZOEtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</title><source>ScienceDirect Journals</source><creator>Keller, V. ; Wehrer, P. ; Garin, F. ; Ducros, R. ; Maire, G.</creator><creatorcontrib>Keller, V. ; Wehrer, P. ; Garin, F. ; Ducros, R. ; Maire, G.</creatorcontrib><description>The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1006/jcat.1997.1516</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Catalysis ; Catalysts: preparations and properties ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of catalysis, 1997-03, Vol.166 (2), p.125-135</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</citedby><cites>FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2599867$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Wehrer, P.</creatorcontrib><creatorcontrib>Garin, F.</creatorcontrib><creatorcontrib>Ducros, R.</creatorcontrib><creatorcontrib>Maire, G.</creatorcontrib><title>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</title><title>Journal of catalysis</title><description>The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.</description><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwMntgTbDd2LHHUvFRqagSKrPlXOzKbZpUdlqRkf-cREUswC2nk9579_RD6JaSlBIi7jdg2pQqlaeUU3GGRpQokjChsnM0IoTRRHGaX6KrGDeEUMq5HKHPmWlN1bUe8BRaf_RthxuHHw7VFq8O9Tq2tsYzEwpf2ohdE_C02pra4jfbHztfr1M8n6f475jfCa9N6Z23JS46vPzo1ra-RhfOVNHefO8xen96XM1eksXyeT6bLhJgirVJTq0AmDDLHS-FA6L6yQujwLGMZYIVZOIcuExlJCNCSGBccilzxyQQxiZjlJ5yITQxBuv0PvidCZ2mRA8A9QBQDwD1ALA33J0MexPBVC6YGnz8cTGulBR5L5Mnme3LH70NOoK3NdjSBwutLhv_34cv8ZOEtA</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Keller, V.</creator><creator>Wehrer, P.</creator><creator>Garin, F.</creator><creator>Ducros, R.</creator><creator>Maire, G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970301</creationdate><title>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</title><author>Keller, V. ; Wehrer, P. ; Garin, F. ; Ducros, R. ; Maire, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, V.</creatorcontrib><creatorcontrib>Wehrer, P.</creatorcontrib><creatorcontrib>Garin, F.</creatorcontrib><creatorcontrib>Ducros, R.</creatorcontrib><creatorcontrib>Maire, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, V.</au><au>Wehrer, P.</au><au>Garin, F.</au><au>Ducros, R.</au><au>Maire, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen</atitle><jtitle>Journal of catalysis</jtitle><date>1997-03-01</date><risdate>1997</risdate><volume>166</volume><issue>2</issue><spage>125</spage><epage>135</epage><pages>125-135</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>The influence of oxygen on the reforming activity of bulk tungsten carbide (WC) has been studied for the reaction of pentanes, hexanes, heptanes, and two olefins (2-methyl-2-pentene and 4-methyl-1-pentene). Depending on the air treatment, at low (−78°C), moderate (350°C), or high (700°C) temperature, these alkanes lead to different reaction products as a result of different reaction mechanisms. Whatever the oxygen treatment, heptanes react faster than hexanes, which are more reactive than pentanes. Furthermore, cyclanes (methylcyclopentane or ethylcyclopentane) are less reactive than linear alkanes (n-pentane,n-hexane, orn-heptane), which react more slowly than the branched ones (isopentane, 2-methylpentane, 3-methylhexane). Whatever the oxygen treatment, no cyclic mechanism is involved and isomerization proceeds only through two kinds of bond-shift mechanisms. In order to obtain more information about the possible mechanisms, i.e., a bifunctional mechanism with dehydrogenation/hydrogenation on metallic sites and carbenium ion rearrangement on acidic sites, two unsaturated reactants (2-methyl-2-pentene and 4-methyl-1-pentene) have been tested. The reaction mechanisms and a kinetic model are discussed in detail in a forthcoming paper.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1006/jcat.1997.1516</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 1997-03, Vol.166 (2), p.125-135
issn 0021-9517
1090-2694
language eng
recordid cdi_crossref_primary_10_1006_jcat_1997_1516
source ScienceDirect Journals
subjects Catalysis
Catalysts: preparations and properties
Chemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Catalytic Activity of Bulk Tungsten Carbides for Alkane Reforming. II. Catalytic Activity of Tungsten Carbides Modified by Oxygen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Activity%20of%20Bulk%20Tungsten%20Carbides%20for%20Alkane%20Reforming.%20II.%20Catalytic%20Activity%20of%20Tungsten%20Carbides%20Modified%20by%20Oxygen&rft.jtitle=Journal%20of%20catalysis&rft.au=Keller,%20V.&rft.date=1997-03-01&rft.volume=166&rft.issue=2&rft.spage=125&rft.epage=135&rft.pages=125-135&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1006/jcat.1997.1516&rft_dat=%3Celsevier_cross%3ES0021951797915165%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-71e6cc32e5f5d6fc099997ba9cf242462b03ffcf494040668c2585887f28c0223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true