Loading…

Vorticity Transport on a Lagrangian Tetrahedral Mesh

An integral vorticity method for computation of incompressible, three-dimensional, viscous fluid flows is introduced which is based on a tetrahedral mesh that is fit to Lagrangian computational points. A fast method for approximation of Biot–Savart type integrals over the tetrahedral elements is int...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2000-06, Vol.161 (1), p.85-113
Main Authors: Marshall, J.S., Grant, J.R., Gossler, A.A., Huyer, S.A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93
cites cdi_FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93
container_end_page 113
container_issue 1
container_start_page 85
container_title Journal of computational physics
container_volume 161
creator Marshall, J.S.
Grant, J.R.
Gossler, A.A.
Huyer, S.A.
description An integral vorticity method for computation of incompressible, three-dimensional, viscous fluid flows is introduced which is based on a tetrahedral mesh that is fit to Lagrangian computational points. A fast method for approximation of Biot–Savart type integrals over the tetrahedral elements is introduced, which uses an analytical expression for the nearest few elements, Gaussian quadratures for moderately distant elements, and a multipole expansion acceleration procedure for distant elements. Differentiation is performed using a moving least-squares procedure, which maintains between first- and second-order accuracy for irregularly spaced points. The moving least-squares method is used to approximate the stretching and diffusion terms in the vorticity transport equation at each Lagrangian computational point. A new algorithm for the vorticity boundary condition on the surface of an immersed rigid body is developed that accounts for the effect of boundary vorticity values both on the total vorticity contained within tetrahedra attached to boundary points and on vorticity diffusion from the surface during the time step. Sample computations are presented for uniform flow past a sphere at Reynolds number 100, as well as computations for validation of specific algorithms.
doi_str_mv 10.1006/jcph.2000.6490
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcph_2000_6490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999100964908</els_id><sourcerecordid>S0021999100964908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93</originalsourceid><addsrcrecordid>eNp1j01LxDAQhoMouK5ePecPtE7SpG2OsvgFFS_Va8jHdJtlbUtShP33tqxXT8MM87y8DyH3DHIGUD4c3NTnHADyUii4IBsGCjJesfKSbAA4y5RS7JrcpHRYvmop6g0RX2OcgwvzibbRDGlaVjoO1NDG7JfDPpiBtjhH06OP5kjfMfW35Kozx4R3f3NLPp-f2t1r1ny8vO0em8zxupyzjrNCFFxxUXNw3qAqhEXHUIpCSc5lZypeCWWrQjpReYadEJUrrbXCSq-KLcnPuS6OKUXs9BTDt4knzUCvznp11quzXp0XoD4DuLT6CRh1cgEHhz5EdLP2Y_gP_QVJXlzG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vorticity Transport on a Lagrangian Tetrahedral Mesh</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Marshall, J.S. ; Grant, J.R. ; Gossler, A.A. ; Huyer, S.A.</creator><creatorcontrib>Marshall, J.S. ; Grant, J.R. ; Gossler, A.A. ; Huyer, S.A.</creatorcontrib><description>An integral vorticity method for computation of incompressible, three-dimensional, viscous fluid flows is introduced which is based on a tetrahedral mesh that is fit to Lagrangian computational points. A fast method for approximation of Biot–Savart type integrals over the tetrahedral elements is introduced, which uses an analytical expression for the nearest few elements, Gaussian quadratures for moderately distant elements, and a multipole expansion acceleration procedure for distant elements. Differentiation is performed using a moving least-squares procedure, which maintains between first- and second-order accuracy for irregularly spaced points. The moving least-squares method is used to approximate the stretching and diffusion terms in the vorticity transport equation at each Lagrangian computational point. A new algorithm for the vorticity boundary condition on the surface of an immersed rigid body is developed that accounts for the effect of boundary vorticity values both on the total vorticity contained within tetrahedra attached to boundary points and on vorticity diffusion from the surface during the time step. Sample computations are presented for uniform flow past a sphere at Reynolds number 100, as well as computations for validation of specific algorithms.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.2000.6490</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 2000-06, Vol.161 (1), p.85-113</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93</citedby><cites>FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marshall, J.S.</creatorcontrib><creatorcontrib>Grant, J.R.</creatorcontrib><creatorcontrib>Gossler, A.A.</creatorcontrib><creatorcontrib>Huyer, S.A.</creatorcontrib><title>Vorticity Transport on a Lagrangian Tetrahedral Mesh</title><title>Journal of computational physics</title><description>An integral vorticity method for computation of incompressible, three-dimensional, viscous fluid flows is introduced which is based on a tetrahedral mesh that is fit to Lagrangian computational points. A fast method for approximation of Biot–Savart type integrals over the tetrahedral elements is introduced, which uses an analytical expression for the nearest few elements, Gaussian quadratures for moderately distant elements, and a multipole expansion acceleration procedure for distant elements. Differentiation is performed using a moving least-squares procedure, which maintains between first- and second-order accuracy for irregularly spaced points. The moving least-squares method is used to approximate the stretching and diffusion terms in the vorticity transport equation at each Lagrangian computational point. A new algorithm for the vorticity boundary condition on the surface of an immersed rigid body is developed that accounts for the effect of boundary vorticity values both on the total vorticity contained within tetrahedra attached to boundary points and on vorticity diffusion from the surface during the time step. Sample computations are presented for uniform flow past a sphere at Reynolds number 100, as well as computations for validation of specific algorithms.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQhoMouK5ePecPtE7SpG2OsvgFFS_Va8jHdJtlbUtShP33tqxXT8MM87y8DyH3DHIGUD4c3NTnHADyUii4IBsGCjJesfKSbAA4y5RS7JrcpHRYvmop6g0RX2OcgwvzibbRDGlaVjoO1NDG7JfDPpiBtjhH06OP5kjfMfW35Kozx4R3f3NLPp-f2t1r1ny8vO0em8zxupyzjrNCFFxxUXNw3qAqhEXHUIpCSc5lZypeCWWrQjpReYadEJUrrbXCSq-KLcnPuS6OKUXs9BTDt4knzUCvznp11quzXp0XoD4DuLT6CRh1cgEHhz5EdLP2Y_gP_QVJXlzG</recordid><startdate>20000610</startdate><enddate>20000610</enddate><creator>Marshall, J.S.</creator><creator>Grant, J.R.</creator><creator>Gossler, A.A.</creator><creator>Huyer, S.A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000610</creationdate><title>Vorticity Transport on a Lagrangian Tetrahedral Mesh</title><author>Marshall, J.S. ; Grant, J.R. ; Gossler, A.A. ; Huyer, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, J.S.</creatorcontrib><creatorcontrib>Grant, J.R.</creatorcontrib><creatorcontrib>Gossler, A.A.</creatorcontrib><creatorcontrib>Huyer, S.A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, J.S.</au><au>Grant, J.R.</au><au>Gossler, A.A.</au><au>Huyer, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vorticity Transport on a Lagrangian Tetrahedral Mesh</atitle><jtitle>Journal of computational physics</jtitle><date>2000-06-10</date><risdate>2000</risdate><volume>161</volume><issue>1</issue><spage>85</spage><epage>113</epage><pages>85-113</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>An integral vorticity method for computation of incompressible, three-dimensional, viscous fluid flows is introduced which is based on a tetrahedral mesh that is fit to Lagrangian computational points. A fast method for approximation of Biot–Savart type integrals over the tetrahedral elements is introduced, which uses an analytical expression for the nearest few elements, Gaussian quadratures for moderately distant elements, and a multipole expansion acceleration procedure for distant elements. Differentiation is performed using a moving least-squares procedure, which maintains between first- and second-order accuracy for irregularly spaced points. The moving least-squares method is used to approximate the stretching and diffusion terms in the vorticity transport equation at each Lagrangian computational point. A new algorithm for the vorticity boundary condition on the surface of an immersed rigid body is developed that accounts for the effect of boundary vorticity values both on the total vorticity contained within tetrahedra attached to boundary points and on vorticity diffusion from the surface during the time step. Sample computations are presented for uniform flow past a sphere at Reynolds number 100, as well as computations for validation of specific algorithms.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcph.2000.6490</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2000-06, Vol.161 (1), p.85-113
issn 0021-9991
1090-2716
language eng
recordid cdi_crossref_primary_10_1006_jcph_2000_6490
source ScienceDirect Freedom Collection 2022-2024
title Vorticity Transport on a Lagrangian Tetrahedral Mesh
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vorticity%20Transport%20on%20a%20Lagrangian%20Tetrahedral%20Mesh&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Marshall,%20J.S.&rft.date=2000-06-10&rft.volume=161&rft.issue=1&rft.spage=85&rft.epage=113&rft.pages=85-113&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.2000.6490&rft_dat=%3Celsevier_cross%3ES0021999100964908%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-f213432924820cdae934bec1e54395225fa72749b735c47d1ef447c6bbb4b5d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true