Loading…
A Suspension Lemma for Bounded Posets
LetPandQbe bounded posets. In this note, a lemma is introduced that provides a set of sufficient conditions for the proper part ofPbeing homotopy equivalent to the suspension of the proper part ofQ. An application of this lemma is a unified proof of the sphericity of the higher Bruhat orders under b...
Saved in:
Published in: | Journal of combinatorial theory. Series A 1997-11, Vol.80 (2), p.374-379 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963 |
container_end_page | 379 |
container_issue | 2 |
container_start_page | 374 |
container_title | Journal of combinatorial theory. Series A |
container_volume | 80 |
creator | Rambau, Jörg |
description | LetPandQbe bounded posets. In this note, a lemma is introduced that provides a set of sufficient conditions for the proper part ofPbeing homotopy equivalent to the suspension of the proper part ofQ. An application of this lemma is a unified proof of the sphericity of the higher Bruhat orders under both inclusion order (which is a known result) and single step inclusion order (which was not known so far). |
doi_str_mv | 10.1006/jcta.1997.2813 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jcta_1997_2813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097316597928132</els_id><sourcerecordid>S0097316597928132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963</originalsourceid><addsrcrecordid>eNp1z09LxDAQhvEgCtbVq-dePLbONP2THNdFV6GgoJ5Dmkwgi22WpCv47d2yXj3N6RneH2O3CCUCtPc7M-sSpezKSiA_YxmCbAsQUp6zDEB2Bce2uWRXKe0AoGqwztjdOn8_pD1NyYcp72kcde5CzB_CYbJk87eQaE7X7MLpr0Q3f3fFPp8ePzbPRf-6fdms-8Lwqp0LJ7RuKtLSOmEQeGeEda6uXDNoLUlg3Yga-FCTdchJDkiVMKLhsqbWypavWHn6a2JIKZJT--hHHX8UglqQakGqBakW5DEQp4COq749RZWMp8mQ9ZHMrGzw_6W_UA9X6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Suspension Lemma for Bounded Posets</title><source>Elsevier</source><creator>Rambau, Jörg</creator><creatorcontrib>Rambau, Jörg</creatorcontrib><description>LetPandQbe bounded posets. In this note, a lemma is introduced that provides a set of sufficient conditions for the proper part ofPbeing homotopy equivalent to the suspension of the proper part ofQ. An application of this lemma is a unified proof of the sphericity of the higher Bruhat orders under both inclusion order (which is a known result) and single step inclusion order (which was not known so far).</description><identifier>ISSN: 0097-3165</identifier><identifier>EISSN: 1096-0899</identifier><identifier>DOI: 10.1006/jcta.1997.2813</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of combinatorial theory. Series A, 1997-11, Vol.80 (2), p.374-379</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963</citedby><cites>FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rambau, Jörg</creatorcontrib><title>A Suspension Lemma for Bounded Posets</title><title>Journal of combinatorial theory. Series A</title><description>LetPandQbe bounded posets. In this note, a lemma is introduced that provides a set of sufficient conditions for the proper part ofPbeing homotopy equivalent to the suspension of the proper part ofQ. An application of this lemma is a unified proof of the sphericity of the higher Bruhat orders under both inclusion order (which is a known result) and single step inclusion order (which was not known so far).</description><issn>0097-3165</issn><issn>1096-0899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1z09LxDAQhvEgCtbVq-dePLbONP2THNdFV6GgoJ5Dmkwgi22WpCv47d2yXj3N6RneH2O3CCUCtPc7M-sSpezKSiA_YxmCbAsQUp6zDEB2Bce2uWRXKe0AoGqwztjdOn8_pD1NyYcp72kcde5CzB_CYbJk87eQaE7X7MLpr0Q3f3fFPp8ePzbPRf-6fdms-8Lwqp0LJ7RuKtLSOmEQeGeEda6uXDNoLUlg3Yga-FCTdchJDkiVMKLhsqbWypavWHn6a2JIKZJT--hHHX8UglqQakGqBakW5DEQp4COq749RZWMp8mQ9ZHMrGzw_6W_UA9X6w</recordid><startdate>199711</startdate><enddate>199711</enddate><creator>Rambau, Jörg</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199711</creationdate><title>A Suspension Lemma for Bounded Posets</title><author>Rambau, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rambau, Jörg</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial theory. Series A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rambau, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Suspension Lemma for Bounded Posets</atitle><jtitle>Journal of combinatorial theory. Series A</jtitle><date>1997-11</date><risdate>1997</risdate><volume>80</volume><issue>2</issue><spage>374</spage><epage>379</epage><pages>374-379</pages><issn>0097-3165</issn><eissn>1096-0899</eissn><abstract>LetPandQbe bounded posets. In this note, a lemma is introduced that provides a set of sufficient conditions for the proper part ofPbeing homotopy equivalent to the suspension of the proper part ofQ. An application of this lemma is a unified proof of the sphericity of the higher Bruhat orders under both inclusion order (which is a known result) and single step inclusion order (which was not known so far).</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcta.1997.2813</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-3165 |
ispartof | Journal of combinatorial theory. Series A, 1997-11, Vol.80 (2), p.374-379 |
issn | 0097-3165 1096-0899 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jcta_1997_2813 |
source | Elsevier |
title | A Suspension Lemma for Bounded Posets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Suspension%20Lemma%20for%20Bounded%20Posets&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20A&rft.au=Rambau,%20J%C3%B6rg&rft.date=1997-11&rft.volume=80&rft.issue=2&rft.spage=374&rft.epage=379&rft.pages=374-379&rft.issn=0097-3165&rft.eissn=1096-0899&rft_id=info:doi/10.1006/jcta.1997.2813&rft_dat=%3Celsevier_cross%3ES0097316597928132%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-f8aa52ea9df8c1037c8dff42f5baa9e81458403b4edf13e9b1e28c85394e6d963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |