Loading…

A Shooting Approach to Chaos in the Lorenz Equations

We prove that under certain conditions, the Lorenz equations support a form of chaos. The conditions have been verified for a particular set of parameter values, showing that there is a natural 1:1 correspondence between a set of solutions and the set of all sequences on countably many symbols. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 1996-05, Vol.127 (1), p.41-53
Main Authors: Hastings, S.P., Troy, W.C.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-ccd271d4509321561768b836997ba907e79937eb9f886506bbef44d2cc17ce593
cites
container_end_page 53
container_issue 1
container_start_page 41
container_title Journal of Differential Equations
container_volume 127
creator Hastings, S.P.
Troy, W.C.
description We prove that under certain conditions, the Lorenz equations support a form of chaos. The conditions have been verified for a particular set of parameter values, showing that there is a natural 1:1 correspondence between a set of solutions and the set of all sequences on countably many symbols. The computing required was modest.
doi_str_mv 10.1006/jdeq.1996.0060
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jdeq_1996_0060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039696900601</els_id><sourcerecordid>S0022039696900601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ccd271d4509321561768b836997ba907e79937eb9f886506bbef44d2cc17ce593</originalsourceid><addsrcrecordid>eNp1j8FOhDAURRujiTi6dd0fAF9baOmSkFEnmcSFum6gPKQTpUyLJvr1Qsatq5e7OPe-Q8gtg4wByLtDh8eMaS2zJcEZSRhoSLkS_JwkAJynILS8JFcxHgAYK2SRkLyiz4P3sxvfaDVNwTd2oLOn9dD4SN1I5wHp3gccf-j2-NnMzo_xmlz0zXvEm7-7Ia_325f6Md0_Pezqap9aweWcWttxxbq8AC34MseULNtSSK1V22hQqLQWClvdl6UsQLYt9nnecWuZslhosSHZqdcGH2PA3kzBfTTh2zAwq7NZnc3qbFbnBShPAC5ffTkMJlqHo8XOBbSz6bz7D_0FacRb4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Shooting Approach to Chaos in the Lorenz Equations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hastings, S.P. ; Troy, W.C.</creator><creatorcontrib>Hastings, S.P. ; Troy, W.C.</creatorcontrib><description>We prove that under certain conditions, the Lorenz equations support a form of chaos. The conditions have been verified for a particular set of parameter values, showing that there is a natural 1:1 correspondence between a set of solutions and the set of all sequences on countably many symbols. The computing required was modest.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1006/jdeq.1996.0060</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of Differential Equations, 1996-05, Vol.127 (1), p.41-53</ispartof><rights>1996 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-ccd271d4509321561768b836997ba907e79937eb9f886506bbef44d2cc17ce593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hastings, S.P.</creatorcontrib><creatorcontrib>Troy, W.C.</creatorcontrib><title>A Shooting Approach to Chaos in the Lorenz Equations</title><title>Journal of Differential Equations</title><description>We prove that under certain conditions, the Lorenz equations support a form of chaos. The conditions have been verified for a particular set of parameter values, showing that there is a natural 1:1 correspondence between a set of solutions and the set of all sequences on countably many symbols. The computing required was modest.</description><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1j8FOhDAURRujiTi6dd0fAF9baOmSkFEnmcSFum6gPKQTpUyLJvr1Qsatq5e7OPe-Q8gtg4wByLtDh8eMaS2zJcEZSRhoSLkS_JwkAJynILS8JFcxHgAYK2SRkLyiz4P3sxvfaDVNwTd2oLOn9dD4SN1I5wHp3gccf-j2-NnMzo_xmlz0zXvEm7-7Ia_325f6Md0_Pezqap9aweWcWttxxbq8AC34MseULNtSSK1V22hQqLQWClvdl6UsQLYt9nnecWuZslhosSHZqdcGH2PA3kzBfTTh2zAwq7NZnc3qbFbnBShPAC5ffTkMJlqHo8XOBbSz6bz7D_0FacRb4A</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Hastings, S.P.</creator><creator>Troy, W.C.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960501</creationdate><title>A Shooting Approach to Chaos in the Lorenz Equations</title><author>Hastings, S.P. ; Troy, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ccd271d4509321561768b836997ba907e79937eb9f886506bbef44d2cc17ce593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hastings, S.P.</creatorcontrib><creatorcontrib>Troy, W.C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hastings, S.P.</au><au>Troy, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Shooting Approach to Chaos in the Lorenz Equations</atitle><jtitle>Journal of Differential Equations</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>127</volume><issue>1</issue><spage>41</spage><epage>53</epage><pages>41-53</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We prove that under certain conditions, the Lorenz equations support a form of chaos. The conditions have been verified for a particular set of parameter values, showing that there is a natural 1:1 correspondence between a set of solutions and the set of all sequences on countably many symbols. The computing required was modest.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jdeq.1996.0060</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 1996-05, Vol.127 (1), p.41-53
issn 0022-0396
1090-2732
language eng
recordid cdi_crossref_primary_10_1006_jdeq_1996_0060
source ScienceDirect Freedom Collection 2022-2024
title A Shooting Approach to Chaos in the Lorenz Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Shooting%20Approach%20to%20Chaos%20in%20the%20Lorenz%20Equations&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Hastings,%20S.P.&rft.date=1996-05-01&rft.volume=127&rft.issue=1&rft.spage=41&rft.epage=53&rft.pages=41-53&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1006/jdeq.1996.0060&rft_dat=%3Celsevier_cross%3ES0022039696900601%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-ccd271d4509321561768b836997ba907e79937eb9f886506bbef44d2cc17ce593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true