Loading…
Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions
This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections o...
Saved in:
Published in: | Journal of Differential Equations 2000-02, Vol.161 (1), p.154-173 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363 |
---|---|
cites | cdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363 |
container_end_page | 173 |
container_issue | 1 |
container_start_page | 154 |
container_title | Journal of Differential Equations |
container_volume | 161 |
creator | Khasminskii, R.Z. Yin, G. |
description | This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained. |
doi_str_mv | 10.1006/jdeq.1999.3647 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jdeq_1999_3647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039699936471</els_id><sourcerecordid>S0022039699936471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKe3XucPtOZjTdvLus0PGE5Er0OanGhG22xJO9i_t2XeenXgvDwvLw9C95SklBDxsDNwSGlZlikXi_wCzSgpScJyzi7RjBDGEsJLcY1uYtwRQmkmshlSVTy1-973TuNH-FFH5wP2Fr-roGrfjN_1YVC9813EVXDRdd_YBt_ibQfJyrXQxTFTDX4bmib5AD2EAF2PV87aYYriLbqyqolw93fn6Otp_bl8STbb59dltUk0Z6JPqM4XNtdMKa0U14UxYFTNxLgboBA154xmxigjeFYU2uiyJrmthdDUFMAFn6P03KuDjzGAlfvgWhVOkhI5CZKTIDkJkpOgESjOAIyrjg6CjNpBp8G4ALqXxrv_0F-YkW-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</title><source>ScienceDirect Freedom Collection</source><creator>Khasminskii, R.Z. ; Yin, G.</creator><creatorcontrib>Khasminskii, R.Z. ; Yin, G.</creatorcontrib><description>This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1006/jdeq.1999.3647</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>asymptotic property ; diffusion ; homogeneous equation ; nonhomogeneous equation ; null recurrence ; parabolic equation</subject><ispartof>Journal of Differential Equations, 2000-02, Vol.161 (1), p.154-173</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</citedby><cites>FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khasminskii, R.Z.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><title>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</title><title>Journal of Differential Equations</title><description>This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.</description><subject>asymptotic property</subject><subject>diffusion</subject><subject>homogeneous equation</subject><subject>nonhomogeneous equation</subject><subject>null recurrence</subject><subject>parabolic equation</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKe3XucPtOZjTdvLus0PGE5Er0OanGhG22xJO9i_t2XeenXgvDwvLw9C95SklBDxsDNwSGlZlikXi_wCzSgpScJyzi7RjBDGEsJLcY1uYtwRQmkmshlSVTy1-973TuNH-FFH5wP2Fr-roGrfjN_1YVC9813EVXDRdd_YBt_ibQfJyrXQxTFTDX4bmib5AD2EAF2PV87aYYriLbqyqolw93fn6Otp_bl8STbb59dltUk0Z6JPqM4XNtdMKa0U14UxYFTNxLgboBA154xmxigjeFYU2uiyJrmthdDUFMAFn6P03KuDjzGAlfvgWhVOkhI5CZKTIDkJkpOgESjOAIyrjg6CjNpBp8G4ALqXxrv_0F-YkW-4</recordid><startdate>20000210</startdate><enddate>20000210</enddate><creator>Khasminskii, R.Z.</creator><creator>Yin, G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000210</creationdate><title>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</title><author>Khasminskii, R.Z. ; Yin, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>asymptotic property</topic><topic>diffusion</topic><topic>homogeneous equation</topic><topic>nonhomogeneous equation</topic><topic>null recurrence</topic><topic>parabolic equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khasminskii, R.Z.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khasminskii, R.Z.</au><au>Yin, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</atitle><jtitle>Journal of Differential Equations</jtitle><date>2000-02-10</date><risdate>2000</risdate><volume>161</volume><issue>1</issue><spage>154</spage><epage>173</epage><pages>154-173</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jdeq.1999.3647</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0396 |
ispartof | Journal of Differential Equations, 2000-02, Vol.161 (1), p.154-173 |
issn | 0022-0396 1090-2732 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jdeq_1999_3647 |
source | ScienceDirect Freedom Collection |
subjects | asymptotic property diffusion homogeneous equation nonhomogeneous equation null recurrence parabolic equation |
title | Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Behavior%20of%20Parabolic%20Equations%20Arising%20from%20One-Dimensional%20Null-Recurrent%20Diffusions&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Khasminskii,%20R.Z.&rft.date=2000-02-10&rft.volume=161&rft.issue=1&rft.spage=154&rft.epage=173&rft.pages=154-173&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1006/jdeq.1999.3647&rft_dat=%3Celsevier_cross%3ES0022039699936471%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |