Loading…

Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions

This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 2000-02, Vol.161 (1), p.154-173
Main Authors: Khasminskii, R.Z., Yin, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363
cites cdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363
container_end_page 173
container_issue 1
container_start_page 154
container_title Journal of Differential Equations
container_volume 161
creator Khasminskii, R.Z.
Yin, G.
description This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.
doi_str_mv 10.1006/jdeq.1999.3647
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jdeq_1999_3647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039699936471</els_id><sourcerecordid>S0022039699936471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKe3XucPtOZjTdvLus0PGE5Er0OanGhG22xJO9i_t2XeenXgvDwvLw9C95SklBDxsDNwSGlZlikXi_wCzSgpScJyzi7RjBDGEsJLcY1uYtwRQmkmshlSVTy1-973TuNH-FFH5wP2Fr-roGrfjN_1YVC9813EVXDRdd_YBt_ibQfJyrXQxTFTDX4bmib5AD2EAF2PV87aYYriLbqyqolw93fn6Otp_bl8STbb59dltUk0Z6JPqM4XNtdMKa0U14UxYFTNxLgboBA154xmxigjeFYU2uiyJrmthdDUFMAFn6P03KuDjzGAlfvgWhVOkhI5CZKTIDkJkpOgESjOAIyrjg6CjNpBp8G4ALqXxrv_0F-YkW-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</title><source>ScienceDirect Freedom Collection</source><creator>Khasminskii, R.Z. ; Yin, G.</creator><creatorcontrib>Khasminskii, R.Z. ; Yin, G.</creatorcontrib><description>This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1006/jdeq.1999.3647</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>asymptotic property ; diffusion ; homogeneous equation ; nonhomogeneous equation ; null recurrence ; parabolic equation</subject><ispartof>Journal of Differential Equations, 2000-02, Vol.161 (1), p.154-173</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</citedby><cites>FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khasminskii, R.Z.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><title>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</title><title>Journal of Differential Equations</title><description>This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.</description><subject>asymptotic property</subject><subject>diffusion</subject><subject>homogeneous equation</subject><subject>nonhomogeneous equation</subject><subject>null recurrence</subject><subject>parabolic equation</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKe3XucPtOZjTdvLus0PGE5Er0OanGhG22xJO9i_t2XeenXgvDwvLw9C95SklBDxsDNwSGlZlikXi_wCzSgpScJyzi7RjBDGEsJLcY1uYtwRQmkmshlSVTy1-973TuNH-FFH5wP2Fr-roGrfjN_1YVC9813EVXDRdd_YBt_ibQfJyrXQxTFTDX4bmib5AD2EAF2PV87aYYriLbqyqolw93fn6Otp_bl8STbb59dltUk0Z6JPqM4XNtdMKa0U14UxYFTNxLgboBA154xmxigjeFYU2uiyJrmthdDUFMAFn6P03KuDjzGAlfvgWhVOkhI5CZKTIDkJkpOgESjOAIyrjg6CjNpBp8G4ALqXxrv_0F-YkW-4</recordid><startdate>20000210</startdate><enddate>20000210</enddate><creator>Khasminskii, R.Z.</creator><creator>Yin, G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000210</creationdate><title>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</title><author>Khasminskii, R.Z. ; Yin, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>asymptotic property</topic><topic>diffusion</topic><topic>homogeneous equation</topic><topic>nonhomogeneous equation</topic><topic>null recurrence</topic><topic>parabolic equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khasminskii, R.Z.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khasminskii, R.Z.</au><au>Yin, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions</atitle><jtitle>Journal of Differential Equations</jtitle><date>2000-02-10</date><risdate>2000</risdate><volume>161</volume><issue>1</issue><spage>154</spage><epage>173</epage><pages>154-173</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>This work is concerned with the asymptotic behavior of homogeneous and nonhomogeneous parabolic equations arising from one-dimensional null-recurrent diffusion processes. First, we review the concepts of regularity, recurrence, and positive recurrence of Markov processes and recall the connections of these concepts with properties of solutions of the corresponding differential equations. Next, we examine the rate of convergence of the solutions of both homogeneous and nonhomogeneous parabolic equations when the initial function and the forcing function are integrable with respect to the invariant measure. Weaker and verifiable conditions compared with the existing work in the literature are obtained. Then the corresponding problems when the initial and forcing functions are not integrable with respect to the invariant measure are dealt with. Convergence under suitable scaling for the solutions of the parabolic equations is proved, and the explicit limit is obtained.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jdeq.1999.3647</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 2000-02, Vol.161 (1), p.154-173
issn 0022-0396
1090-2732
language eng
recordid cdi_crossref_primary_10_1006_jdeq_1999_3647
source ScienceDirect Freedom Collection
subjects asymptotic property
diffusion
homogeneous equation
nonhomogeneous equation
null recurrence
parabolic equation
title Asymptotic Behavior of Parabolic Equations Arising from One-Dimensional Null-Recurrent Diffusions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Behavior%20of%20Parabolic%20Equations%20Arising%20from%20One-Dimensional%20Null-Recurrent%20Diffusions&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Khasminskii,%20R.Z.&rft.date=2000-02-10&rft.volume=161&rft.issue=1&rft.spage=154&rft.epage=173&rft.pages=154-173&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1006/jdeq.1999.3647&rft_dat=%3Celsevier_cross%3ES0022039699936471%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-1c74f7c2aacaa3c8ddedab26022ee86b33215ddad63588cdc9b07fb66c1d8e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true