Loading…

On Martingale Inequalities in Non-commutative Stochastic Analysis

We develop a non-commutativeLpstochastic calculus for the Clifford stochastic integral, anL2theory of which has been developed by Barnett, Streater, and Wilde. The main results are certain non-commutativeLpinequalities relating Clifford integrals and their integrands. These results are applied to ex...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 1998-10, Vol.158 (2), p.475-508
Main Authors: Carlen, Eric A, Krée, Paul
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3
cites cdi_FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3
container_end_page 508
container_issue 2
container_start_page 475
container_title Journal of functional analysis
container_volume 158
creator Carlen, Eric A
Krée, Paul
description We develop a non-commutativeLpstochastic calculus for the Clifford stochastic integral, anL2theory of which has been developed by Barnett, Streater, and Wilde. The main results are certain non-commutativeLpinequalities relating Clifford integrals and their integrands. These results are applied to extend the domain of the Clifford integral fromL2toL1integrands, and we give applications to optional stopping of Clifford martingales, proving an analog of a Theorem of Burkholder: The stopped Clifford processFThas zero expectation providedET
doi_str_mv 10.1006/jfan.1998.3299
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_1998_3299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123698932992</els_id><sourcerecordid>S0022123698932992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqWwMucFEq7jxk3GquKnUqEDMFs3NzfgKnHAdiv17WnUrkzfdD4dHSHuJWQSQD9sW3SZrKoyU3lVXYiJhEqnMC_VpZgA5Hkqc6WvxU0IWwAp9ayYiMXGJa_oo3Vf2HGycvy7w85GyyGxLnkbXEpD3-8iRrvn5D0O9I0hWkoWDrtDsOFWXLXYBb4771R8Pj1-LF_S9eZ5tVysU1K5jmnBsxKKupVYayyPgooLAip1DboASYqokaDquaKZxhob1gUqjUi5JMJWTUV2-iU_hOC5NT_e9ugPRoIZA5gxgBkDmDHAEShPAB-t9pa9CWTZETfWM0XTDPY_9A_vGGNF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Martingale Inequalities in Non-commutative Stochastic Analysis</title><source>Elsevier</source><creator>Carlen, Eric A ; Krée, Paul</creator><creatorcontrib>Carlen, Eric A ; Krée, Paul</creatorcontrib><description>We develop a non-commutativeLpstochastic calculus for the Clifford stochastic integral, anL2theory of which has been developed by Barnett, Streater, and Wilde. The main results are certain non-commutativeLpinequalities relating Clifford integrals and their integrands. These results are applied to extend the domain of the Clifford integral fromL2toL1integrands, and we give applications to optional stopping of Clifford martingales, proving an analog of a Theorem of Burkholder: The stopped Clifford processFThas zero expectation providedET&lt;∞. In proving these results, we establish a number of results relating the Clifford integral to the differential calculus in the Clifford algebra. In particular, we show that the Clifford integral is given by the divergence operator, and we prove an explicit martingale representation theorem. Both of these results correspond closely to basic results for stochastic analysis on Wiener space, thus furthering the analogy between the Clifford process and Brownian motion.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.1998.3299</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of functional analysis, 1998-10, Vol.158 (2), p.475-508</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3</citedby><cites>FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carlen, Eric A</creatorcontrib><creatorcontrib>Krée, Paul</creatorcontrib><title>On Martingale Inequalities in Non-commutative Stochastic Analysis</title><title>Journal of functional analysis</title><description>We develop a non-commutativeLpstochastic calculus for the Clifford stochastic integral, anL2theory of which has been developed by Barnett, Streater, and Wilde. The main results are certain non-commutativeLpinequalities relating Clifford integrals and their integrands. These results are applied to extend the domain of the Clifford integral fromL2toL1integrands, and we give applications to optional stopping of Clifford martingales, proving an analog of a Theorem of Burkholder: The stopped Clifford processFThas zero expectation providedET&lt;∞. In proving these results, we establish a number of results relating the Clifford integral to the differential calculus in the Clifford algebra. In particular, we show that the Clifford integral is given by the divergence operator, and we prove an explicit martingale representation theorem. Both of these results correspond closely to basic results for stochastic analysis on Wiener space, thus furthering the analogy between the Clifford process and Brownian motion.</description><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqWwMucFEq7jxk3GquKnUqEDMFs3NzfgKnHAdiv17WnUrkzfdD4dHSHuJWQSQD9sW3SZrKoyU3lVXYiJhEqnMC_VpZgA5Hkqc6WvxU0IWwAp9ayYiMXGJa_oo3Vf2HGycvy7w85GyyGxLnkbXEpD3-8iRrvn5D0O9I0hWkoWDrtDsOFWXLXYBb4771R8Pj1-LF_S9eZ5tVysU1K5jmnBsxKKupVYayyPgooLAip1DboASYqokaDquaKZxhob1gUqjUi5JMJWTUV2-iU_hOC5NT_e9ugPRoIZA5gxgBkDmDHAEShPAB-t9pa9CWTZETfWM0XTDPY_9A_vGGNF</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Carlen, Eric A</creator><creator>Krée, Paul</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981001</creationdate><title>On Martingale Inequalities in Non-commutative Stochastic Analysis</title><author>Carlen, Eric A ; Krée, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlen, Eric A</creatorcontrib><creatorcontrib>Krée, Paul</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlen, Eric A</au><au>Krée, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Martingale Inequalities in Non-commutative Stochastic Analysis</atitle><jtitle>Journal of functional analysis</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>158</volume><issue>2</issue><spage>475</spage><epage>508</epage><pages>475-508</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We develop a non-commutativeLpstochastic calculus for the Clifford stochastic integral, anL2theory of which has been developed by Barnett, Streater, and Wilde. The main results are certain non-commutativeLpinequalities relating Clifford integrals and their integrands. These results are applied to extend the domain of the Clifford integral fromL2toL1integrands, and we give applications to optional stopping of Clifford martingales, proving an analog of a Theorem of Burkholder: The stopped Clifford processFThas zero expectation providedET&lt;∞. In proving these results, we establish a number of results relating the Clifford integral to the differential calculus in the Clifford algebra. In particular, we show that the Clifford integral is given by the divergence operator, and we prove an explicit martingale representation theorem. Both of these results correspond closely to basic results for stochastic analysis on Wiener space, thus furthering the analogy between the Clifford process and Brownian motion.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.1998.3299</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 1998-10, Vol.158 (2), p.475-508
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1006_jfan_1998_3299
source Elsevier
title On Martingale Inequalities in Non-commutative Stochastic Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Martingale%20Inequalities%20in%20Non-commutative%20Stochastic%20Analysis&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Carlen,%20Eric%20A&rft.date=1998-10-01&rft.volume=158&rft.issue=2&rft.spage=475&rft.epage=508&rft.pages=475-508&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.1998.3299&rft_dat=%3Celsevier_cross%3ES0022123698932992%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-5e4805bf1ab6a82993e5c0c86b06501c3ccd103b73c46abade65a36aac21ccaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true