Loading…
Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space
We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the ima...
Saved in:
Published in: | Journal of functional analysis 2002-01, Vol.188 (1), p.137-155 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3 |
container_end_page | 155 |
container_issue | 1 |
container_start_page | 137 |
container_title | Journal of functional analysis |
container_volume | 188 |
creator | Unterberger, Jérémie M. |
description | We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis. |
doi_str_mv | 10.1006/jfan.2001.3832 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_2001_3832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123601938327</els_id><sourcerecordid>S0022123601938327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwMucFEnx24zgjqihFVOoQGJHl2mdw1SaRHZDy9jhqBxaGuxvu-0-nj5B7oAVQKh72TrcFoxQKLjm7IDOgtchpJfklmVHKWA6Mi2tyE-M-USAW5Yx8rMcewyd2RxyCN9nquzWD79qYdS5r0HStzV59ajpV039hgvThL9amVbYNFgMmYjyeDzW9NnhLrpw-RLw7zzl5Xz29Ldf5Zvv8snzc5IYBH3LHpC2ZKzkCX4CuraCCM62dk9ZUorKukjsUrC41hVrAzkEphHHlrua4sJrPSXG6a0IXY0Cn-uCPOowKqJrkqEmOmuSoSU4KyFMA01c_HoOKxmNr0PqAZlC28_9FfwEzkWwp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</title><source>ScienceDirect Journals</source><creator>Unterberger, Jérémie M.</creator><creatorcontrib>Unterberger, Jérémie M.</creatorcontrib><description>We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.2001.3832</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of functional analysis, 2002-01, Vol.188 (1), p.137-155</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Unterberger, Jérémie M.</creatorcontrib><title>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</title><title>Journal of functional analysis</title><description>We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.</description><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwMucFEnx24zgjqihFVOoQGJHl2mdw1SaRHZDy9jhqBxaGuxvu-0-nj5B7oAVQKh72TrcFoxQKLjm7IDOgtchpJfklmVHKWA6Mi2tyE-M-USAW5Yx8rMcewyd2RxyCN9nquzWD79qYdS5r0HStzV59ajpV039hgvThL9amVbYNFgMmYjyeDzW9NnhLrpw-RLw7zzl5Xz29Ldf5Zvv8snzc5IYBH3LHpC2ZKzkCX4CuraCCM62dk9ZUorKukjsUrC41hVrAzkEphHHlrua4sJrPSXG6a0IXY0Cn-uCPOowKqJrkqEmOmuSoSU4KyFMA01c_HoOKxmNr0PqAZlC28_9FfwEzkWwp</recordid><startdate>20020110</startdate><enddate>20020110</enddate><creator>Unterberger, Jérémie M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020110</creationdate><title>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</title><author>Unterberger, Jérémie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unterberger, Jérémie M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unterberger, Jérémie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</atitle><jtitle>Journal of functional analysis</jtitle><date>2002-01-10</date><risdate>2002</risdate><volume>188</volume><issue>1</issue><spage>137</spage><epage>155</epage><pages>137-155</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.2001.3832</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2002-01, Vol.188 (1), p.137-155 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jfan_2001_3832 |
source | ScienceDirect Journals |
title | Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypergeometric%20Functions%20of%20Second%20Kind%20and%20Spherical%20Functions%20on%20an%20Ordered%20Symmetric%20Space&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Unterberger,%20J%C3%A9r%C3%A9mie%20M.&rft.date=2002-01-10&rft.volume=188&rft.issue=1&rft.spage=137&rft.epage=155&rft.pages=137-155&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.2001.3832&rft_dat=%3Celsevier_cross%3ES0022123601938327%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |