Loading…

Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space

We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the ima...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 2002-01, Vol.188 (1), p.137-155
Main Author: Unterberger, Jérémie M.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3
container_end_page 155
container_issue 1
container_start_page 137
container_title Journal of functional analysis
container_volume 188
creator Unterberger, Jérémie M.
description We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.
doi_str_mv 10.1006/jfan.2001.3832
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jfan_2001_3832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123601938327</els_id><sourcerecordid>S0022123601938327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwMucFEnx24zgjqihFVOoQGJHl2mdw1SaRHZDy9jhqBxaGuxvu-0-nj5B7oAVQKh72TrcFoxQKLjm7IDOgtchpJfklmVHKWA6Mi2tyE-M-USAW5Yx8rMcewyd2RxyCN9nquzWD79qYdS5r0HStzV59ajpV039hgvThL9amVbYNFgMmYjyeDzW9NnhLrpw-RLw7zzl5Xz29Ldf5Zvv8snzc5IYBH3LHpC2ZKzkCX4CuraCCM62dk9ZUorKukjsUrC41hVrAzkEphHHlrua4sJrPSXG6a0IXY0Cn-uCPOowKqJrkqEmOmuSoSU4KyFMA01c_HoOKxmNr0PqAZlC28_9FfwEzkWwp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</title><source>ScienceDirect Journals</source><creator>Unterberger, Jérémie M.</creator><creatorcontrib>Unterberger, Jérémie M.</creatorcontrib><description>We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1006/jfan.2001.3832</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of functional analysis, 2002-01, Vol.188 (1), p.137-155</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Unterberger, Jérémie M.</creatorcontrib><title>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</title><title>Journal of functional analysis</title><description>We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.</description><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwMucFEnx24zgjqihFVOoQGJHl2mdw1SaRHZDy9jhqBxaGuxvu-0-nj5B7oAVQKh72TrcFoxQKLjm7IDOgtchpJfklmVHKWA6Mi2tyE-M-USAW5Yx8rMcewyd2RxyCN9nquzWD79qYdS5r0HStzV59ajpV039hgvThL9amVbYNFgMmYjyeDzW9NnhLrpw-RLw7zzl5Xz29Ldf5Zvv8snzc5IYBH3LHpC2ZKzkCX4CuraCCM62dk9ZUorKukjsUrC41hVrAzkEphHHlrua4sJrPSXG6a0IXY0Cn-uCPOowKqJrkqEmOmuSoSU4KyFMA01c_HoOKxmNr0PqAZlC28_9FfwEzkWwp</recordid><startdate>20020110</startdate><enddate>20020110</enddate><creator>Unterberger, Jérémie M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020110</creationdate><title>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</title><author>Unterberger, Jérémie M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unterberger, Jérémie M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unterberger, Jérémie M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space</atitle><jtitle>Journal of functional analysis</jtitle><date>2002-01-10</date><risdate>2002</risdate><volume>188</volume><issue>1</issue><spage>137</spage><epage>155</epage><pages>137-155</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We define new solutions of the hypergeometric system that are invariant with respect to a parabolic Weyl subgroup. They generalize the spherical functions of an ordered symmetric space. We study their properties with respect to monodromy, their analytic extensions and their boundary value on the imaginary axis.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jfan.2001.3832</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1236
ispartof Journal of functional analysis, 2002-01, Vol.188 (1), p.137-155
issn 0022-1236
1096-0783
language eng
recordid cdi_crossref_primary_10_1006_jfan_2001_3832
source ScienceDirect Journals
title Hypergeometric Functions of Second Kind and Spherical Functions on an Ordered Symmetric Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypergeometric%20Functions%20of%20Second%20Kind%20and%20Spherical%20Functions%20on%20an%20Ordered%20Symmetric%20Space&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Unterberger,%20J%C3%A9r%C3%A9mie%20M.&rft.date=2002-01-10&rft.volume=188&rft.issue=1&rft.spage=137&rft.epage=155&rft.pages=137-155&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1006/jfan.2001.3832&rft_dat=%3Celsevier_cross%3ES0022123601938327%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c213t-f28d52f53e1341a9d60632aaff8dc767df78be6295a01961bf1566cf5b93e4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true