Loading…
Asymptotic Theory for Canonical Correlation Analysis
The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regres...
Saved in:
Published in: | Journal of multivariate analysis 1999-07, Vol.70 (1), p.1-29 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3 |
---|---|
cites | |
container_end_page | 29 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of multivariate analysis |
container_volume | 70 |
creator | Anderson, T.W. |
description | The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected. |
doi_str_mv | 10.1006/jmva.1999.1810 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmva_1999_1810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X99918109</els_id><sourcerecordid>S0047259X99918109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3</originalsourceid><addsrcrecordid>eNp1ULFOwzAQtRBIlMLKnIE14RzHSTxWERSkSixFYrNc56K6SuLIjirl73EaBBPDu7vhvXf3jpBHCgkFyJ9P3VklVAiR0JLCFVlREDwu0oxdkxVAVsQpF1-35M77EwClvMhWJNv4qRtGOxod7Y9o3RQ11kWV6m1vtGqjyjqHrRqN7aNNr9rJG39PbhrVenz46Wvy-fqyr97i3cf2vdrsYp2VfIxLrVFwTWuWYl3nhzxDzYFzxJIh5njgNas1TSlDgYyiyg6FaACQF2lQNWxNksVXO-u9w0YOznTKTZKCnDPLObOcM8s5cxBsF4HDAfUvGxFnYq_kWTJVQChTwEXHlJnHgOHSUyGPYxecnhanQfnwhsapXhv_t7-EHHIaaOVCw_CGs0EnvTbYa6yNQz3K2pr_bv0GKFqD_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Theory for Canonical Correlation Analysis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Anderson, T.W.</creator><creatorcontrib>Anderson, T.W.</creatorcontrib><description>The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1006/jmva.1999.1810</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>canonical variates ; canonical variates reduced rank regression maximum likelihood estimators test of rank. ; Distribution theory ; Exact sciences and technology ; Linear inference, regression ; Mathematics ; maximum likelihood estimators ; Multivariate analysis ; Probability and statistics ; reduced rank regression ; Sciences and techniques of general use ; Statistics ; test of rank</subject><ispartof>Journal of multivariate analysis, 1999-07, Vol.70 (1), p.1-29</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1806061$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a70_3ay_3a1999_3ai_3a1_3ap_3a1-29.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, T.W.</creatorcontrib><title>Asymptotic Theory for Canonical Correlation Analysis</title><title>Journal of multivariate analysis</title><description>The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.</description><subject>canonical variates</subject><subject>canonical variates reduced rank regression maximum likelihood estimators test of rank.</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>maximum likelihood estimators</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>reduced rank regression</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>test of rank</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAQtRBIlMLKnIE14RzHSTxWERSkSixFYrNc56K6SuLIjirl73EaBBPDu7vhvXf3jpBHCgkFyJ9P3VklVAiR0JLCFVlREDwu0oxdkxVAVsQpF1-35M77EwClvMhWJNv4qRtGOxod7Y9o3RQ11kWV6m1vtGqjyjqHrRqN7aNNr9rJG39PbhrVenz46Wvy-fqyr97i3cf2vdrsYp2VfIxLrVFwTWuWYl3nhzxDzYFzxJIh5njgNas1TSlDgYyiyg6FaACQF2lQNWxNksVXO-u9w0YOznTKTZKCnDPLObOcM8s5cxBsF4HDAfUvGxFnYq_kWTJVQChTwEXHlJnHgOHSUyGPYxecnhanQfnwhsapXhv_t7-EHHIaaOVCw_CGs0EnvTbYa6yNQz3K2pr_bv0GKFqD_w</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Anderson, T.W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>Asymptotic Theory for Canonical Correlation Analysis</title><author>Anderson, T.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>canonical variates</topic><topic>canonical variates reduced rank regression maximum likelihood estimators test of rank.</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>maximum likelihood estimators</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>reduced rank regression</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>test of rank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, T.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, T.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Theory for Canonical Correlation Analysis</atitle><jtitle>Journal of multivariate analysis</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>70</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmva.1999.1810</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 1999-07, Vol.70 (1), p.1-29 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_crossref_primary_10_1006_jmva_1999_1810 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | canonical variates canonical variates reduced rank regression maximum likelihood estimators test of rank. Distribution theory Exact sciences and technology Linear inference, regression Mathematics maximum likelihood estimators Multivariate analysis Probability and statistics reduced rank regression Sciences and techniques of general use Statistics test of rank |
title | Asymptotic Theory for Canonical Correlation Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Theory%20for%20Canonical%20Correlation%20Analysis&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Anderson,%20T.W.&rft.date=1999-07-01&rft.volume=70&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1006/jmva.1999.1810&rft_dat=%3Celsevier_cross%3ES0047259X99918109%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |