Loading…

Asymptotic Theory for Canonical Correlation Analysis

The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regres...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 1999-07, Vol.70 (1), p.1-29
Main Author: Anderson, T.W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3
cites
container_end_page 29
container_issue 1
container_start_page 1
container_title Journal of multivariate analysis
container_volume 70
creator Anderson, T.W.
description The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.
doi_str_mv 10.1006/jmva.1999.1810
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jmva_1999_1810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X99918109</els_id><sourcerecordid>S0047259X99918109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3</originalsourceid><addsrcrecordid>eNp1ULFOwzAQtRBIlMLKnIE14RzHSTxWERSkSixFYrNc56K6SuLIjirl73EaBBPDu7vhvXf3jpBHCgkFyJ9P3VklVAiR0JLCFVlREDwu0oxdkxVAVsQpF1-35M77EwClvMhWJNv4qRtGOxod7Y9o3RQ11kWV6m1vtGqjyjqHrRqN7aNNr9rJG39PbhrVenz46Wvy-fqyr97i3cf2vdrsYp2VfIxLrVFwTWuWYl3nhzxDzYFzxJIh5njgNas1TSlDgYyiyg6FaACQF2lQNWxNksVXO-u9w0YOznTKTZKCnDPLObOcM8s5cxBsF4HDAfUvGxFnYq_kWTJVQChTwEXHlJnHgOHSUyGPYxecnhanQfnwhsapXhv_t7-EHHIaaOVCw_CGs0EnvTbYa6yNQz3K2pr_bv0GKFqD_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic Theory for Canonical Correlation Analysis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Anderson, T.W.</creator><creatorcontrib>Anderson, T.W.</creatorcontrib><description>The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1006/jmva.1999.1810</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>canonical variates ; canonical variates reduced rank regression maximum likelihood estimators test of rank. ; Distribution theory ; Exact sciences and technology ; Linear inference, regression ; Mathematics ; maximum likelihood estimators ; Multivariate analysis ; Probability and statistics ; reduced rank regression ; Sciences and techniques of general use ; Statistics ; test of rank</subject><ispartof>Journal of multivariate analysis, 1999-07, Vol.70 (1), p.1-29</ispartof><rights>1999 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1806061$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a70_3ay_3a1999_3ai_3a1_3ap_3a1-29.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, T.W.</creatorcontrib><title>Asymptotic Theory for Canonical Correlation Analysis</title><title>Journal of multivariate analysis</title><description>The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.</description><subject>canonical variates</subject><subject>canonical variates reduced rank regression maximum likelihood estimators test of rank.</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>maximum likelihood estimators</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>reduced rank regression</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>test of rank</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAQtRBIlMLKnIE14RzHSTxWERSkSixFYrNc56K6SuLIjirl73EaBBPDu7vhvXf3jpBHCgkFyJ9P3VklVAiR0JLCFVlREDwu0oxdkxVAVsQpF1-35M77EwClvMhWJNv4qRtGOxod7Y9o3RQ11kWV6m1vtGqjyjqHrRqN7aNNr9rJG39PbhrVenz46Wvy-fqyr97i3cf2vdrsYp2VfIxLrVFwTWuWYl3nhzxDzYFzxJIh5njgNas1TSlDgYyiyg6FaACQF2lQNWxNksVXO-u9w0YOznTKTZKCnDPLObOcM8s5cxBsF4HDAfUvGxFnYq_kWTJVQChTwEXHlJnHgOHSUyGPYxecnhanQfnwhsapXhv_t7-EHHIaaOVCw_CGs0EnvTbYa6yNQz3K2pr_bv0GKFqD_w</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Anderson, T.W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>Asymptotic Theory for Canonical Correlation Analysis</title><author>Anderson, T.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>canonical variates</topic><topic>canonical variates reduced rank regression maximum likelihood estimators test of rank.</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>maximum likelihood estimators</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>reduced rank regression</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>test of rank</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, T.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, T.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Theory for Canonical Correlation Analysis</atitle><jtitle>Journal of multivariate analysis</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>70</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>The asymptotic distribution of the sample canonical correlations and coefficients of the canonical variates is obtained when the nonzero population canonical correlations are distinct and sampling is from the normal distribution. The asymptotic distributions are also obtained for reduced rank regression when one set of variables is treated as independent (stochastic or nonstochastic) and the other set as dependent. Earlier work is corrected.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/jmva.1999.1810</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 1999-07, Vol.70 (1), p.1-29
issn 0047-259X
1095-7243
language eng
recordid cdi_crossref_primary_10_1006_jmva_1999_1810
source ScienceDirect Freedom Collection 2022-2024
subjects canonical variates
canonical variates reduced rank regression maximum likelihood estimators test of rank.
Distribution theory
Exact sciences and technology
Linear inference, regression
Mathematics
maximum likelihood estimators
Multivariate analysis
Probability and statistics
reduced rank regression
Sciences and techniques of general use
Statistics
test of rank
title Asymptotic Theory for Canonical Correlation Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Theory%20for%20Canonical%20Correlation%20Analysis&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Anderson,%20T.W.&rft.date=1999-07-01&rft.volume=70&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1006/jmva.1999.1810&rft_dat=%3Celsevier_cross%3ES0047259X99918109%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-8cce95c1d32edd6b64ec5055ee83ee6eb5d3dc1213e9e31ea4b79f00e572c1df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true