Loading…

A Latency Optimal Superstabilizing Mutual Exclusion Protocol in Unidirectional Rings

A self-stabilizing protocol is a protocol that achieves its intended behavior regardless of the initial configuration. Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults. A self-stabilizing protocol is called a superstabilizing protocol if it can recover fr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of parallel and distributed computing 2002-05, Vol.62 (5), p.865-884
Main Authors: Katayama, Yoshiaki, Ueda, Eiichiro, Fujiwara, Hideo, Masuzawa, Toshimitsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3
cites cdi_FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3
container_end_page 884
container_issue 5
container_start_page 865
container_title Journal of parallel and distributed computing
container_volume 62
creator Katayama, Yoshiaki
Ueda, Eiichiro
Fujiwara, Hideo
Masuzawa, Toshimitsu
description A self-stabilizing protocol is a protocol that achieves its intended behavior regardless of the initial configuration. Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults. A self-stabilizing protocol is called a superstabilizing protocol if it can recover from any “almost legitimate” configuration while satisfying a certain safety property during the recovery. Superstabilizing protocols are attractive since the number of processes that experience transient faults at the same time is small in most cases, and the resultant configuration is almost legitimate. Herman [Distrib. Comput. 13(1) (2002), 1–17] investigates superstabilizing mutual exclusion protocols in unidirectional rings. Herman considers, as the almost legitimate configuration, any configuration that results from a transient fault of a single process, and proposes the following safety property that should be satisfied during the recovery: no two processes simultaneously have privileges with the single exception of a temporary spurious privilege that the faulty process has. Herman adopts the process-register model, and shows an impossibility result: there exists no 1-latent protocol using fewer than 2n registers, where n is the number of processes in the ring. Herman also presents an n-latent protocol using n registers and a 1-latent protocol using 2n registers. In this paper, we further consider the latency of superstabilizing mutual exclusion protocols on unidirectional rings. On the shared variable model, we show that there exists no ⌊n/2⌋-latent protocol, and present a (⌈n/2⌉+1)-latent protocol. The proposed protocol is latency-optimal for the case that n is even.
doi_str_mv 10.1006/jpdc.2001.1826
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jpdc_2001_1826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S074373150191826X</els_id><sourcerecordid>S074373150191826X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw5dw_0GInbdoep2l8SEVDsJ2jkA-UqbRV0iLGryfVuHKyZPux_D6E3CJkCMDvDoNWGQXADCvKz8gCoeYpVHl1ThZQ5iwtGRaX5CqEQ9zCoqwWZLdKGjmaTh2T7TC6T9kmb9NgfBjlu2vdj-s-kudpnGJ_863aKbi-S158P_aqbxPXJfvOaeeNGuMgLr1GIFyTCyvbYG7-6pLs7ze79WPabB-e1qsmVaygY2o5ZRViZZHnRrKyNAAFalvUIJFTajTkaMuaciYZ5LnltcKSI2ikWoFkS5Kd7irfh-CNFYOPEfxRIIjZiZidiNmJmJ1EoDoBJn715YwXQbkY3pwiCN27_9Bf0VtoQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Latency Optimal Superstabilizing Mutual Exclusion Protocol in Unidirectional Rings</title><source>Elsevier</source><creator>Katayama, Yoshiaki ; Ueda, Eiichiro ; Fujiwara, Hideo ; Masuzawa, Toshimitsu</creator><creatorcontrib>Katayama, Yoshiaki ; Ueda, Eiichiro ; Fujiwara, Hideo ; Masuzawa, Toshimitsu</creatorcontrib><description>A self-stabilizing protocol is a protocol that achieves its intended behavior regardless of the initial configuration. Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults. A self-stabilizing protocol is called a superstabilizing protocol if it can recover from any “almost legitimate” configuration while satisfying a certain safety property during the recovery. Superstabilizing protocols are attractive since the number of processes that experience transient faults at the same time is small in most cases, and the resultant configuration is almost legitimate. Herman [Distrib. Comput. 13(1) (2002), 1–17] investigates superstabilizing mutual exclusion protocols in unidirectional rings. Herman considers, as the almost legitimate configuration, any configuration that results from a transient fault of a single process, and proposes the following safety property that should be satisfied during the recovery: no two processes simultaneously have privileges with the single exception of a temporary spurious privilege that the faulty process has. Herman adopts the process-register model, and shows an impossibility result: there exists no 1-latent protocol using fewer than 2n registers, where n is the number of processes in the ring. Herman also presents an n-latent protocol using n registers and a 1-latent protocol using 2n registers. In this paper, we further consider the latency of superstabilizing mutual exclusion protocols on unidirectional rings. On the shared variable model, we show that there exists no ⌊n/2⌋-latent protocol, and present a (⌈n/2⌉+1)-latent protocol. The proposed protocol is latency-optimal for the case that n is even.</description><identifier>ISSN: 0743-7315</identifier><identifier>EISSN: 1096-0848</identifier><identifier>DOI: 10.1006/jpdc.2001.1826</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>mutual exclusion ; ring network ; self-stabilization ; superstabilization</subject><ispartof>Journal of parallel and distributed computing, 2002-05, Vol.62 (5), p.865-884</ispartof><rights>2002 Elsevier Science (USA)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3</citedby><cites>FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Katayama, Yoshiaki</creatorcontrib><creatorcontrib>Ueda, Eiichiro</creatorcontrib><creatorcontrib>Fujiwara, Hideo</creatorcontrib><creatorcontrib>Masuzawa, Toshimitsu</creatorcontrib><title>A Latency Optimal Superstabilizing Mutual Exclusion Protocol in Unidirectional Rings</title><title>Journal of parallel and distributed computing</title><description>A self-stabilizing protocol is a protocol that achieves its intended behavior regardless of the initial configuration. Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults. A self-stabilizing protocol is called a superstabilizing protocol if it can recover from any “almost legitimate” configuration while satisfying a certain safety property during the recovery. Superstabilizing protocols are attractive since the number of processes that experience transient faults at the same time is small in most cases, and the resultant configuration is almost legitimate. Herman [Distrib. Comput. 13(1) (2002), 1–17] investigates superstabilizing mutual exclusion protocols in unidirectional rings. Herman considers, as the almost legitimate configuration, any configuration that results from a transient fault of a single process, and proposes the following safety property that should be satisfied during the recovery: no two processes simultaneously have privileges with the single exception of a temporary spurious privilege that the faulty process has. Herman adopts the process-register model, and shows an impossibility result: there exists no 1-latent protocol using fewer than 2n registers, where n is the number of processes in the ring. Herman also presents an n-latent protocol using n registers and a 1-latent protocol using 2n registers. In this paper, we further consider the latency of superstabilizing mutual exclusion protocols on unidirectional rings. On the shared variable model, we show that there exists no ⌊n/2⌋-latent protocol, and present a (⌈n/2⌉+1)-latent protocol. The proposed protocol is latency-optimal for the case that n is even.</description><subject>mutual exclusion</subject><subject>ring network</subject><subject>self-stabilization</subject><subject>superstabilization</subject><issn>0743-7315</issn><issn>1096-0848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw5dw_0GInbdoep2l8SEVDsJ2jkA-UqbRV0iLGryfVuHKyZPux_D6E3CJkCMDvDoNWGQXADCvKz8gCoeYpVHl1ThZQ5iwtGRaX5CqEQ9zCoqwWZLdKGjmaTh2T7TC6T9kmb9NgfBjlu2vdj-s-kudpnGJ_863aKbi-S158P_aqbxPXJfvOaeeNGuMgLr1GIFyTCyvbYG7-6pLs7ze79WPabB-e1qsmVaygY2o5ZRViZZHnRrKyNAAFalvUIJFTajTkaMuaciYZ5LnltcKSI2ikWoFkS5Kd7irfh-CNFYOPEfxRIIjZiZidiNmJmJ1EoDoBJn715YwXQbkY3pwiCN27_9Bf0VtoQA</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Katayama, Yoshiaki</creator><creator>Ueda, Eiichiro</creator><creator>Fujiwara, Hideo</creator><creator>Masuzawa, Toshimitsu</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020501</creationdate><title>A Latency Optimal Superstabilizing Mutual Exclusion Protocol in Unidirectional Rings</title><author>Katayama, Yoshiaki ; Ueda, Eiichiro ; Fujiwara, Hideo ; Masuzawa, Toshimitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>mutual exclusion</topic><topic>ring network</topic><topic>self-stabilization</topic><topic>superstabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katayama, Yoshiaki</creatorcontrib><creatorcontrib>Ueda, Eiichiro</creatorcontrib><creatorcontrib>Fujiwara, Hideo</creatorcontrib><creatorcontrib>Masuzawa, Toshimitsu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of parallel and distributed computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katayama, Yoshiaki</au><au>Ueda, Eiichiro</au><au>Fujiwara, Hideo</au><au>Masuzawa, Toshimitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Latency Optimal Superstabilizing Mutual Exclusion Protocol in Unidirectional Rings</atitle><jtitle>Journal of parallel and distributed computing</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>62</volume><issue>5</issue><spage>865</spage><epage>884</epage><pages>865-884</pages><issn>0743-7315</issn><eissn>1096-0848</eissn><abstract>A self-stabilizing protocol is a protocol that achieves its intended behavior regardless of the initial configuration. Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults. A self-stabilizing protocol is called a superstabilizing protocol if it can recover from any “almost legitimate” configuration while satisfying a certain safety property during the recovery. Superstabilizing protocols are attractive since the number of processes that experience transient faults at the same time is small in most cases, and the resultant configuration is almost legitimate. Herman [Distrib. Comput. 13(1) (2002), 1–17] investigates superstabilizing mutual exclusion protocols in unidirectional rings. Herman considers, as the almost legitimate configuration, any configuration that results from a transient fault of a single process, and proposes the following safety property that should be satisfied during the recovery: no two processes simultaneously have privileges with the single exception of a temporary spurious privilege that the faulty process has. Herman adopts the process-register model, and shows an impossibility result: there exists no 1-latent protocol using fewer than 2n registers, where n is the number of processes in the ring. Herman also presents an n-latent protocol using n registers and a 1-latent protocol using 2n registers. In this paper, we further consider the latency of superstabilizing mutual exclusion protocols on unidirectional rings. On the shared variable model, we show that there exists no ⌊n/2⌋-latent protocol, and present a (⌈n/2⌉+1)-latent protocol. The proposed protocol is latency-optimal for the case that n is even.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jpdc.2001.1826</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7315
ispartof Journal of parallel and distributed computing, 2002-05, Vol.62 (5), p.865-884
issn 0743-7315
1096-0848
language eng
recordid cdi_crossref_primary_10_1006_jpdc_2001_1826
source Elsevier
subjects mutual exclusion
ring network
self-stabilization
superstabilization
title A Latency Optimal Superstabilizing Mutual Exclusion Protocol in Unidirectional Rings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Latency%20Optimal%20Superstabilizing%20Mutual%20Exclusion%20Protocol%20in%20Unidirectional%20Rings&rft.jtitle=Journal%20of%20parallel%20and%20distributed%20computing&rft.au=Katayama,%20Yoshiaki&rft.date=2002-05-01&rft.volume=62&rft.issue=5&rft.spage=865&rft.epage=884&rft.pages=865-884&rft.issn=0743-7315&rft.eissn=1096-0848&rft_id=info:doi/10.1006/jpdc.2001.1826&rft_dat=%3Celsevier_cross%3ES074373150191826X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-f6238118f164ea377e0051df590a1622ed041f79263a3044f69c17610d12dc0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true