Loading…
Mechanism of Extracellular Thiol Nitrosylation by N2O3 Produced by Activated Macrophages
Reactive nitrogen intermediates are synthesized by activated macrophages. These molecules, and nitrous anhydride (N2O3) in particular, are known to be potent nitrosylating species. We investigated the role of macrophage-derived N2O3 in extracellular nitrosylation. We used dilution experiments to dem...
Saved in:
Published in: | Nitric oxide 1999-12, Vol.3 (6), p.467-472 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reactive nitrogen intermediates are synthesized by activated macrophages. These molecules, and nitrous anhydride (N2O3) in particular, are known to be potent nitrosylating species. We investigated the role of macrophage-derived N2O3 in extracellular nitrosylation. We used dilution experiments to demonstrate the intracellular production of N2O3 and its export into the extracellular medium, with a rate constant kex = 6.8 × 106 M s−1. The kinetics of the competition between extracellular hydrolysis of N2O3 and its reaction with added glutathione were also studied. We obtained a value of the rate constant kGSH for the latter reaction of 4.4 × 107 M−1 s−1, consistent with earlier determinations in cell-free systems. The implications of these results in human albumin nitrosylation were investigated. Nitrosylated albumin was detected in activated macrophages supernatants using an anti-NO-acetylated cysteine antibody. It was estimated that 10% of N2O3 produced by activated cells participate in extracellular nitrosylation. N2O3 thus appears to be a new effector molecule of the immune system, as an agent for the nitrosylation of albumin, the main nitric oxide carrier in vivo. |
---|---|
ISSN: | 1089-8603 1089-8611 |
DOI: | 10.1006/niox.1999.0260 |