Loading…

Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring

Many mutagenic nitroso compounds are also diabetogenic. Betel-nut (Areca catechu) chewing populations have an increased incidence of foregut cancers related to betel-nut nitrosamines which suggests that betel consumption could be diabetogenic. Young adult CD1 mice with a low spontaneous incidence of...

Full description

Saved in:
Bibliographic Details
Published in:Diabetologia 1994, Vol.37 (1), p.49-55
Main Authors: BOUCHER, B. J, EWEN, S. W. B, STOWERS, J. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many mutagenic nitroso compounds are also diabetogenic. Betel-nut (Areca catechu) chewing populations have an increased incidence of foregut cancers related to betel-nut nitrosamines which suggests that betel consumption could be diabetogenic. Young adult CD1 mice with a low spontaneous incidence of diabetes were fed betel nut in standard feed for 2-6 days. Single point (90 min) intra-peritoneal glucose tolerance tests were used to follow glucose tolerance up to 6 months of age. Glucose intolerance was defined as over 3 SD above mean control values. Glucose intolerance was found in 3 of 51 male and 4 of 33 female adult mice which were fed the betel diet (p < 0.01). Studies on the progeny of these mice are presented separately for animals studied in Aberdeen (Group 1) and London (Group 2). In matings of Group 1 betel-fed parents glucose intolerance was found in 4 of 25 male and 1 of 22 female F1 offspring, with significant hyperglycaemia in F1 males born to hyperglycaemic but not to normoglycaemic mothers (p < 0.01). In the F2 generation 4 of 23 males and 1 of 16 females and in the F3 generation 1 of 16 males and 0 of 20 females were glucose intolerant. In the Group 2 studies where betel-fed parents were mated to normal controls glucose intolerance was found in 10 of 35 male and 10 of 33 female F1 progeny (p < 0.005), and mean islet areas were increased in offspring of betel-fed parents (p < 0.001).
ISSN:0012-186X
1432-0428
DOI:10.1007/BF00428777