Loading…
Phosphatase cytochemistry with cerium as trapping agent: verification of acid phosphatase and glucose-6-phosphatase reactive sites
Lead is prevalently replaced by cerium as trapping agent in phosphatase cytochemistry to prevent non-specific precipitation. Recently, substrate specific but artefactual lead precipitates have been described in the nuclear envelope (NE) and rough endoplasmic reticulum (RER) due to a local matrix eff...
Saved in:
Published in: | Histochemistry 1986-01, Vol.84 (4-6), p.329-332 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lead is prevalently replaced by cerium as trapping agent in phosphatase cytochemistry to prevent non-specific precipitation. Recently, substrate specific but artefactual lead precipitates have been described in the nuclear envelope (NE) and rough endoplasmic reticulum (RER) due to a local matrix effect. In the present study a verification was carried out of the localization of acid phosphatase and glucose-6-phosphatase in the NE and RER of rat peritoneal macrophages and hepatocytes respectively with cerium. It appeared that precipitates of cerium phosphate in NE and RER of peritoneal macrophages do not represent sites of acid phosphatase activity but are due to the matrix effect. However, in rat hepatocytes these organelles demonstrate true reactive sites for glucose-6-phosphatase. |
---|---|
ISSN: | 0301-5564 1432-119X |
DOI: | 10.1007/BF00482958 |