Loading…

Multiple structural genes for mouse amylase

Salivary and pancreatic amylases from the mouse show both structural and quantitative genetic variation encoded within a gene complex on chromosome 3. Two fundamental questions prompted by this variation are whether salivary and pancreatic amylases are derived from different structural genes and whe...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical genetics 1980-04, Vol.18 (3-4), p.281-302
Main Authors: Hjorth, J P, Lusis, A J, Nielsen, J T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salivary and pancreatic amylases from the mouse show both structural and quantitative genetic variation encoded within a gene complex on chromosome 3. Two fundamental questions prompted by this variation are whether salivary and pancreatic amylases are derived from different structural genes and whether multiple structural genes are causing the quantitative variation observed in each of the two amylases. These questions were approached by comparing the amylase protein from 12 congenic lines carrying amylase gene complexes derived from different origins. The amylases were purified by affinity chromatography employing the inhibitor cyclohepta-amylose and characterized in terms of amino acid composition, specific activity, molecular weight, and heat stability. They were analyzed by native electrophoresis in polyacrylamide gels and by peptide mapping employing both cyanogen bromide cleavage and restricted proteolysis in the presence of dodecylsulfate. By these techniques, many differences in the structure of pancreatic amylase that were not reflected in the salivary amylase were found among mouse strains. Likewise, a distinct salivary amylase variant was found. These results suggest that independent structural genes exist for the two amylases. Furthermore, by all criteria used, pancreatic amylase from single strains exhibits molecular heterogeneity, whereas heterogeneity was never found for salivary amylase. We conclude that at least four structural genes code for pancreatic amylase while only a single gene, different from any of the pancreatic genes, codes for salivary amylase.
ISSN:0006-2928
1573-4927
DOI:10.1007/BF00484242