Loading…
The Circumstellar Imager: Direct detection of extra-solar planetary systems
The Astrometric Imaging Telescope (AIT) is designed to probe the circumstellar environment by both direct imaging and indirect astrometric measurements. The Circumstellar Imager (CI) is a coronagraphic camera and is the direct imaging component of the AIT. The CI is designed to obtain high-sensitivi...
Saved in:
Published in: | Astrophysics and space science 1994-02, Vol.212 (1-2), p.441-452 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Astrometric Imaging Telescope (AIT) is designed to probe the circumstellar environment by both direct imaging and indirect astrometric measurements. The Circumstellar Imager (CI) is a coronagraphic camera and is the direct imaging component of the AIT. The CI is designed to obtain high-sensitivity images of the circumstellar region. It provides crucial non-inferential information relating to the frequency, origin, and evolution of planetary systems and all forms of circumstellar matter. Such imaging is usually limited by the scattered and diffracted light halos of the star itself, which are greatly suppressed in the CI by mating a novel high-efficiency coronagraph with a phase-compensated optical system. For faint point sources in the circumstellar region, the CI will have a sensitivity in excess of 5 magnitudes fainter than the as-designed Hubble Space Telescope (HST). Laboratory data are shown for the coronagraph, which, in a diffraction-limited environment, is capable of suppressing the stellar diffraction sidelobes by several orders of magnitude without significant sacrifice of field of view. In order to realize the high rejection levels inherent in the coronagraph design, it is necessary to limit scatter in the optical systems, imposing a mid-spatial frequency figure error requirement an order of magnitude smaller than that of the HST. Experimental data directed toward meeting this requirement are also shown. |
---|---|
ISSN: | 0004-640X 1572-946X |
DOI: | 10.1007/BF00984548 |