Loading…

Physical conditions of propagation media and their influence on the rooting of cuttings. III. The effect of air content and temperature in different propagation media on the rooting of cuttings

The formation and subsequent growth of roots by cuttings of poinsettia, hydrangea, rose and azalea in various propagation media, Jiffy-7, Jiffy-9 and Grodan under different conditions of aeration was investigated. The interrelationships of the effects of air content of the media, temperature and lig...

Full description

Saved in:
Bibliographic Details
Published in:Plant and soil 1983-02, Vol.75 (1), p.1-14
Main Author: Gislerod, H.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation and subsequent growth of roots by cuttings of poinsettia, hydrangea, rose and azalea in various propagation media, Jiffy-7, Jiffy-9 and Grodan under different conditions of aeration was investigated. The interrelationships of the effects of air content of the media, temperature and light intensity on the rooting of poinsettia cuttings was also studied. With low air contents (0 cm moisture tension) in the propagation media the formation and growth of roots was strongly inhibited. The rooting performance of rose appeared to be less affected by the poor aeration. Increasing air content improved rooting but best results were obtained at moisture tensions of 4 to 8 cm. Rooting seems to be better correlated with oxygen diffusion rate (ODR) than with air content. For poinsettia cuttings the optimum temperature for rooting was 24 to 28°C. At low temperatures rooting was delayed while at higher temperatures it was almost completely inhibited. Callus formation increased with temperature but decreased with increasing moisture tension. Conditions which induced large callus formation inhibited root formation. High light intensity during rooting reduced overall rooting performance and the inhibition was most pronounced in conjunction with high moisture tensions.
ISSN:0032-079X
1573-5036
DOI:10.1007/BF02178609