Loading…

Development of the Process Conception of Function

Our goal in this paper is to make two points. First, college students, even those who have taken a fair number of mathematics courses, do not have much of an understanding of the function concept; and second, an epistemological theory we have been developing points to an instructional treatment, usi...

Full description

Saved in:
Bibliographic Details
Published in:Educational studies in mathematics 1992-06, Vol.23 (3), p.247-285
Main Authors: Breidenbach, Daniel, Dubinsky, Ed, Hawks, Julie, Nichols, Devilyna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3
cites cdi_FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3
container_end_page 285
container_issue 3
container_start_page 247
container_title Educational studies in mathematics
container_volume 23
creator Breidenbach, Daniel
Dubinsky, Ed
Hawks, Julie
Nichols, Devilyna
description Our goal in this paper is to make two points. First, college students, even those who have taken a fair number of mathematics courses, do not have much of an understanding of the function concept; and second, an epistemological theory we have been developing points to an instructional treatment, using computers, that results in substantial improvements for many students. They seem to develop a process conception of function and are able to use it to do mathematics. After an introductory section we outline, in Section 2, our theoretical epistemology in general and indicate how it applies to the function concept in particular. In Sections 3, 4, and 5 we provide specific details on this study and describe the development of the function concept that appeared to take place in the students that we are considering. In Section 6 we interpret the results and draw some conclusions.
doi_str_mv 10.1007/BF02309532
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF02309532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ453573</ericid><jstor_id>3482775</jstor_id><sourcerecordid>3482775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhQdRMFY3rl1kLUTvzc28lhobHxR0oeuQjDOY0mbCTBT89yZU2tW58H1cOIexS4QbBJC39xXkBJpTfsQS5JIyUCiOWQKAlKHmxSk7i3ENAGryE4YP9sdu_LC1_Zh6l45fNn0L3tgY09L3xg5j5_uZVN-9me9zduKaTbQX_7lgH9XyvXzKVq-Pz-XdKjOoxJjxXHFnHBJZzkm6tjH6Ewk5gbKkWqvbVilBSgiJrYKGt40EbXLQuSuEoQW73v01wccYrKuH0G2b8Fsj1HPZ-lB2kq92sg2d2YvLl4LTNMIBr-Pow55ToXIpOf0BPPpXlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of the Process Conception of Function</title><source>Springer Online Journals Archive Complete</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ERIC</source><creator>Breidenbach, Daniel ; Dubinsky, Ed ; Hawks, Julie ; Nichols, Devilyna</creator><creatorcontrib>Breidenbach, Daniel ; Dubinsky, Ed ; Hawks, Julie ; Nichols, Devilyna</creatorcontrib><description>Our goal in this paper is to make two points. First, college students, even those who have taken a fair number of mathematics courses, do not have much of an understanding of the function concept; and second, an epistemological theory we have been developing points to an instructional treatment, using computers, that results in substantial improvements for many students. They seem to develop a process conception of function and are able to use it to do mathematics. After an introductory section we outline, in Section 2, our theoretical epistemology in general and indicate how it applies to the function concept in particular. In Sections 3, 4, and 5 we provide specific details on this study and describe the development of the function concept that appeared to take place in the students that we are considering. In Section 6 we interpret the results and draw some conclusions.</description><identifier>ISSN: 0013-1954</identifier><identifier>EISSN: 1573-0816</identifier><identifier>DOI: 10.1007/BF02309532</identifier><language>eng</language><publisher>Kluwer Academic Publishers</publisher><subject>Algebra ; Boolean data ; Cognitive Development ; Cognitive Measurement ; College Mathematics ; Computer Assisted Instruction ; Computers in education ; Concept Formation ; Epistemology ; Functions (Mathematics) ; Higher Education ; Integers ; ISETL Programing Language ; Knowledge Level ; Mathematical expressions ; Mathematical functions ; Mathematical objects ; Mathematical sets ; Mathematics Achievement ; Mathematics Education ; Mathematics Instruction ; Secondary Education</subject><ispartof>Educational studies in mathematics, 1992-06, Vol.23 (3), p.247-285</ispartof><rights>Copyright 1992 Kluwer Academic Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3</citedby><cites>FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3482775$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3482775$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,58210,58443</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ453573$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Breidenbach, Daniel</creatorcontrib><creatorcontrib>Dubinsky, Ed</creatorcontrib><creatorcontrib>Hawks, Julie</creatorcontrib><creatorcontrib>Nichols, Devilyna</creatorcontrib><title>Development of the Process Conception of Function</title><title>Educational studies in mathematics</title><description>Our goal in this paper is to make two points. First, college students, even those who have taken a fair number of mathematics courses, do not have much of an understanding of the function concept; and second, an epistemological theory we have been developing points to an instructional treatment, using computers, that results in substantial improvements for many students. They seem to develop a process conception of function and are able to use it to do mathematics. After an introductory section we outline, in Section 2, our theoretical epistemology in general and indicate how it applies to the function concept in particular. In Sections 3, 4, and 5 we provide specific details on this study and describe the development of the function concept that appeared to take place in the students that we are considering. In Section 6 we interpret the results and draw some conclusions.</description><subject>Algebra</subject><subject>Boolean data</subject><subject>Cognitive Development</subject><subject>Cognitive Measurement</subject><subject>College Mathematics</subject><subject>Computer Assisted Instruction</subject><subject>Computers in education</subject><subject>Concept Formation</subject><subject>Epistemology</subject><subject>Functions (Mathematics)</subject><subject>Higher Education</subject><subject>Integers</subject><subject>ISETL Programing Language</subject><subject>Knowledge Level</subject><subject>Mathematical expressions</subject><subject>Mathematical functions</subject><subject>Mathematical objects</subject><subject>Mathematical sets</subject><subject>Mathematics Achievement</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Secondary Education</subject><issn>0013-1954</issn><issn>1573-0816</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><recordid>eNpFkEtLw0AUhQdRMFY3rl1kLUTvzc28lhobHxR0oeuQjDOY0mbCTBT89yZU2tW58H1cOIexS4QbBJC39xXkBJpTfsQS5JIyUCiOWQKAlKHmxSk7i3ENAGryE4YP9sdu_LC1_Zh6l45fNn0L3tgY09L3xg5j5_uZVN-9me9zduKaTbQX_7lgH9XyvXzKVq-Pz-XdKjOoxJjxXHFnHBJZzkm6tjH6Ewk5gbKkWqvbVilBSgiJrYKGt40EbXLQuSuEoQW73v01wccYrKuH0G2b8Fsj1HPZ-lB2kq92sg2d2YvLl4LTNMIBr-Pow55ToXIpOf0BPPpXlw</recordid><startdate>19920601</startdate><enddate>19920601</enddate><creator>Breidenbach, Daniel</creator><creator>Dubinsky, Ed</creator><creator>Hawks, Julie</creator><creator>Nichols, Devilyna</creator><general>Kluwer Academic Publishers</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920601</creationdate><title>Development of the Process Conception of Function</title><author>Breidenbach, Daniel ; Dubinsky, Ed ; Hawks, Julie ; Nichols, Devilyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algebra</topic><topic>Boolean data</topic><topic>Cognitive Development</topic><topic>Cognitive Measurement</topic><topic>College Mathematics</topic><topic>Computer Assisted Instruction</topic><topic>Computers in education</topic><topic>Concept Formation</topic><topic>Epistemology</topic><topic>Functions (Mathematics)</topic><topic>Higher Education</topic><topic>Integers</topic><topic>ISETL Programing Language</topic><topic>Knowledge Level</topic><topic>Mathematical expressions</topic><topic>Mathematical functions</topic><topic>Mathematical objects</topic><topic>Mathematical sets</topic><topic>Mathematics Achievement</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Secondary Education</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breidenbach, Daniel</creatorcontrib><creatorcontrib>Dubinsky, Ed</creatorcontrib><creatorcontrib>Hawks, Julie</creatorcontrib><creatorcontrib>Nichols, Devilyna</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Educational studies in mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breidenbach, Daniel</au><au>Dubinsky, Ed</au><au>Hawks, Julie</au><au>Nichols, Devilyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ453573</ericid><atitle>Development of the Process Conception of Function</atitle><jtitle>Educational studies in mathematics</jtitle><date>1992-06-01</date><risdate>1992</risdate><volume>23</volume><issue>3</issue><spage>247</spage><epage>285</epage><pages>247-285</pages><issn>0013-1954</issn><eissn>1573-0816</eissn><abstract>Our goal in this paper is to make two points. First, college students, even those who have taken a fair number of mathematics courses, do not have much of an understanding of the function concept; and second, an epistemological theory we have been developing points to an instructional treatment, using computers, that results in substantial improvements for many students. They seem to develop a process conception of function and are able to use it to do mathematics. After an introductory section we outline, in Section 2, our theoretical epistemology in general and indicate how it applies to the function concept in particular. In Sections 3, 4, and 5 we provide specific details on this study and describe the development of the function concept that appeared to take place in the students that we are considering. In Section 6 we interpret the results and draw some conclusions.</abstract><pub>Kluwer Academic Publishers</pub><doi>10.1007/BF02309532</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-1954
ispartof Educational studies in mathematics, 1992-06, Vol.23 (3), p.247-285
issn 0013-1954
1573-0816
language eng
recordid cdi_crossref_primary_10_1007_BF02309532
source Springer Online Journals Archive Complete; JSTOR Archival Journals and Primary Sources Collection; ERIC
subjects Algebra
Boolean data
Cognitive Development
Cognitive Measurement
College Mathematics
Computer Assisted Instruction
Computers in education
Concept Formation
Epistemology
Functions (Mathematics)
Higher Education
Integers
ISETL Programing Language
Knowledge Level
Mathematical expressions
Mathematical functions
Mathematical objects
Mathematical sets
Mathematics Achievement
Mathematics Education
Mathematics Instruction
Secondary Education
title Development of the Process Conception of Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T19%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20Process%20Conception%20of%20Function&rft.jtitle=Educational%20studies%20in%20mathematics&rft.au=Breidenbach,%20Daniel&rft.date=1992-06-01&rft.volume=23&rft.issue=3&rft.spage=247&rft.epage=285&rft.pages=247-285&rft.issn=0013-1954&rft.eissn=1573-0816&rft_id=info:doi/10.1007/BF02309532&rft_dat=%3Cjstor_cross%3E3482775%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c186t-5285fcf133e5537fbac9d1315308e38be9bb886386671b80a5ba709c2092f46c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ453573&rft_jstor_id=3482775&rfr_iscdi=true