Loading…
Temporo-spatial distribution of matrix and microfilament components during odontoblast and ameloblast differentiation
Several extracellular matrix components (procollagen type III, fibronectin, collagen type IV, laminin and nidogen) and microfilament constituents (actin, α-actinin and vinculin) were localized by indirect immunofluorescence microscopy in frozen sections of embryonic mouse molars. Nidogen was present...
Saved in:
Published in: | Roux's archives of developmental biology 1988-07, Vol.197 (4), p.212-220 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several extracellular matrix components (procollagen type III, fibronectin, collagen type IV, laminin and nidogen) and microfilament constituents (actin, α-actinin and vinculin) were localized by indirect immunofluorescence microscopy in frozen sections of embryonic mouse molars. Nidogen was present at the epithelio-mesenchymal junction during polarization and initial steps of functional differentiation of odontoblasts. Nidogen disappeared at a stage where direct contacts between preameloblasts and predentin were required to allow the initiation of ameloblast polarization. Our observations concerning the distribution of procollagen type III and fibronectin during odontoblast differentiation add to current knowledge. Procollagen type III and fibronectin surrounding preodontoblasts accumulated at the apical part of polarizing and functional odontoblasts secreting "initial" predentin. Procollagen type III, but not fibronectin, disappeared in front of functional odontoblasts synthesizing "late" predentin and dentin. Fibronectin, present in "initial" predentin, was no longer detected in "late" predentin and dentin but was found between odontoblasts secreting "late" predentin and dentin. Actin, α-actinin and vinculin were concentrated in the peripheral cytoplasm of preameloblasts and accumulated at the apical and basal poles of functional ameloblasts. During differentiation of odontoblasts, the three proteins accumulated at the apical pole of these cells. Time and space correlations between matrix and microfilament modifications during odontoblast and ameloblast differentiation are documented. The possibility is discussed that there is transmembranous control of the cytoskeletal activities of odontoblasts and ameloblasts by the extracellular matrix. |
---|---|
ISSN: | 0930-035X 1432-041X |
DOI: | 10.1007/bf02439428 |