Loading…
Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent
Saved in:
Published in: | Algebra and logic 1997-05, Vol.36 (3), p.155-163 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3 |
container_end_page | 163 |
container_issue | 3 |
container_start_page | 155 |
container_title | Algebra and logic |
container_volume | 36 |
creator | Bogopolskii, O. V. |
description | |
doi_str_mv | 10.1007/BF02671613 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF02671613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF02671613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3</originalsourceid><addsrcrecordid>eNpFj01LxDAUAIMoWFcv_oKchehL0r62R11dXSh40XNJ0lc30i-TVlh_vSsKnoa5DAxjlxKuJUB-c7cBhblEqY9YIrNci0KDOmYJACiRKa1O2VmM7wctsYCE3W-H1g9-Ju7GvqchLsHYjvhuP1GwY-cdfwvjMkVuAnHrReWn6HZ-_uL0sfhP09Ewn7OT1nSRLv64Yq-bh5f1k6ieH7fr20o4meIsmjwDUqkm0roEBa5wGTrIDbm2IGictEhlqhGRHBZlk6KWtslMkVpUyuoVu_rtujDGGKitp-B7E_a1hPrnv_7_19-fgk2r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent</title><source>Springer Nature</source><creator>Bogopolskii, O. V.</creator><creatorcontrib>Bogopolskii, O. V.</creatorcontrib><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/BF02671613</identifier><language>eng</language><ispartof>Algebra and logic, 1997-05, Vol.36 (3), p.155-163</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3</citedby><cites>FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Bogopolskii, O. V.</creatorcontrib><title>Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent</title><title>Algebra and logic</title><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFj01LxDAUAIMoWFcv_oKchehL0r62R11dXSh40XNJ0lc30i-TVlh_vSsKnoa5DAxjlxKuJUB-c7cBhblEqY9YIrNci0KDOmYJACiRKa1O2VmM7wctsYCE3W-H1g9-Ju7GvqchLsHYjvhuP1GwY-cdfwvjMkVuAnHrReWn6HZ-_uL0sfhP09Ewn7OT1nSRLv64Yq-bh5f1k6ieH7fr20o4meIsmjwDUqkm0roEBa5wGTrIDbm2IGictEhlqhGRHBZlk6KWtslMkVpUyuoVu_rtujDGGKitp-B7E_a1hPrnv_7_19-fgk2r</recordid><startdate>199705</startdate><enddate>199705</enddate><creator>Bogopolskii, O. V.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199705</creationdate><title>Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent</title><author>Bogopolskii, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogopolskii, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogopolskii, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent</atitle><jtitle>Algebra and logic</jtitle><date>1997-05</date><risdate>1997</risdate><volume>36</volume><issue>3</issue><spage>155</spage><epage>163</epage><pages>155-163</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><doi>10.1007/BF02671613</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5232 |
ispartof | Algebra and logic, 1997-05, Vol.36 (3), p.155-163 |
issn | 0002-5232 1573-8302 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF02671613 |
source | Springer Nature |
title | Infinite commensurable hyperbolic groups are bi-Lipschitz equivalent |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20commensurable%20hyperbolic%20groups%20are%20bi-Lipschitz%20equivalent&rft.jtitle=Algebra%20and%20logic&rft.au=Bogopolskii,%20O.%20V.&rft.date=1997-05&rft.volume=36&rft.issue=3&rft.spage=155&rft.epage=163&rft.pages=155-163&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/BF02671613&rft_dat=%3Ccrossref%3E10_1007_BF02671613%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c146t-d750e243ee339020c8c56c07aecf8e0dc1b6e943666ec689d4631bd5a84b622b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |