Loading…
Influence of microcystin-LR on the activity of membrane enzymes in rat intestinal mucosa
The objective of the present study was to evaluate the effects of microcystin-LR (MCLR) on the activity of membrane enzymes from intestinal mucosa. In addition, serum chemistry and peroxidative status of both serum and intestinal homogenate were evaluated after treatment with MCLR. Wistar rats were...
Saved in:
Published in: | Journal of physiology and biochemistry 2003-12, Vol.59 (4), p.293-299 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of the present study was to evaluate the effects of microcystin-LR (MCLR) on the activity of membrane enzymes from intestinal mucosa. In addition, serum chemistry and peroxidative status of both serum and intestinal homogenate were evaluated after treatment with MCLR. Wistar rats were treated with intraperitoneal injection of either 100 microg pure MCLR/Kg body weight or saline solution. A significant increase in liver weight and altered serum enzyme activities were found in MCLR-treated rats, indicating damage to the liver in these rats, as previously suggested. A higher specific activity of sucrase (1.5-fold) was observed after the administration of MCLR, whereas other intestinal apical membrane enzymes, such as lactase, maltase and alkaline phosphatase were not modified by the treatment. The specific activities of acid phosphatase and succinate dehydrogenase, markers for lysosomal and mitochondrial membranes, respectively, were also increased (32% and 60%, respectively) in treated rats. The analysis of lipid peroxidation showed that the peroxidative status was increased in both serum and intestinal mucosa from MCLR-treated rats, reflecting an excess production of oxygen free radicals induced by this cyanobacterial toxin. In conclusion, this study shows that acute exposure to MCLR affects the intestinal physiology by modifying the intestinal peroxidation status as well as the activity of membrane enzymes. |
---|---|
ISSN: | 1138-7548 1877-8755 |
DOI: | 10.1007/BF03179887 |