Loading…
Real Time Linear Simulation and Control for Small Aircraft Turbojet Engine
The performance of the aircraft gas turbine engine requires optimization because it is directly related to overall aircraft performance. In this study, a modified DYNGEN, a nolinear dynamic simulation program with component maps of the small aircraft turbojet engine, was used to predict the overall...
Saved in:
Published in: | Journal of mechanical science and technology 1999-09, Vol.13 (9), p.656-666 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of the aircraft gas turbine engine requires optimization because it is directly related to overall aircraft performance. In this study, a modified DYNGEN, a nolinear dynamic simulation program with component maps of the small aircraft turbojet engine, was used to predict the overall engine performance. Response characteristics of various cases, such as 6%, 5% and 3% rpm step models and the real-time linear model of the interpolation scheme within the operating range were compared. Among them, the real time linear model was selected for the turbojet engine with nonlinear characteristics. Finally control schemes such as PI (Proportional-Integral Controller) and LQR (Linear Quadratic Regulator) were applied to optimize the engine performance. The overshoot of the turbine inlet temperature was effectively eliminated by LQR controller with the proper control gain K.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1226-4865 1738-494X 1976-3824 |
DOI: | 10.1007/BF03184576 |