Loading…
Modeling and Motion Control of Mobile Robot for Lattice Type Welding
This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and pre...
Saved in:
Published in: | Journal of mechanical science and technology 2002, Vol.16 (1), p.83-93 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43 |
container_end_page | 93 |
container_issue | 1 |
container_start_page | 83 |
container_title | Journal of mechanical science and technology |
container_volume | 16 |
creator | Jeon, Yang Bae Kim, Sang Bong |
description | This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF03185158 |
format | article |
fullrecord | <record><control><sourceid>nurimedia_proqu</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF03185158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE00336636</nurid><sourcerecordid>NODE00336636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AiCs4fL_4FARFEqCa5JE0fdW4qTAWZ-FjS5iIdXTOT7sH_3ojDiU8X7j53hG-WnTB6ySgtrm6mFJiWTOqdbMTKQuWgudhNb85VLrSS-9lBjAtKZcmBjbLbR2-xa_t3YnpLHv3Q-p6MfT8E3xHvUqduOyQvvvYDcT6QmRmGtkEy_1whecPOpt2jbM-ZLuLxph5mr9PJfHyfz57vHsbXs7wBSYdcYFMaKLUU2qCzZQ1Kg1VoNVoJDOu6oGnqapUIcJAanXCudtwV1jQCDrPzn7ur4D_WGIdq2cYGu8706NexYlypQgLlZaKn_-jCr0OfflcxylNWTAiZ1MWPaoKPMaCrVqFdmvCZUPUdaLUNNOGzzUkTG9O5YPqmjdsNEEyx8o_r12mEtjW_5un5dkIpgFKg4AuCSn9G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021001445</pqid></control><display><type>article</type><title>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</title><source>Springer Nature</source><creator>Jeon, Yang Bae ; Kim, Sang Bong</creator><creatorcontrib>Jeon, Yang Bae ; Kim, Sang Bong</creatorcontrib><description>This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1226-4865</identifier><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/BF03185158</identifier><language>eng</language><publisher>Seoul: 대한기계학회</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lattices ; Locomotion ; Mathematical analysis ; Mathematical models ; Motion control ; Physics ; Robotics ; Robots ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Studies ; Turning ; Welding</subject><ispartof>Journal of mechanical science and technology, 2002, Vol.16 (1), p.83-93</ispartof><rights>2002 INIST-CNRS</rights><rights>The Korean Society of Mechanical Engineers (KSME) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</citedby><cites>FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27910,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13416198$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Yang Bae</creatorcontrib><creatorcontrib>Kim, Sang Bong</creatorcontrib><title>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</title><title>Journal of mechanical science and technology</title><description>This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattices</subject><subject>Locomotion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Physics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Studies</subject><subject>Turning</subject><subject>Welding</subject><issn>1226-4865</issn><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpd0N9LwzAQB_AiCs4fL_4FARFEqCa5JE0fdW4qTAWZ-FjS5iIdXTOT7sH_3ojDiU8X7j53hG-WnTB6ySgtrm6mFJiWTOqdbMTKQuWgudhNb85VLrSS-9lBjAtKZcmBjbLbR2-xa_t3YnpLHv3Q-p6MfT8E3xHvUqduOyQvvvYDcT6QmRmGtkEy_1whecPOpt2jbM-ZLuLxph5mr9PJfHyfz57vHsbXs7wBSYdcYFMaKLUU2qCzZQ1Kg1VoNVoJDOu6oGnqapUIcJAanXCudtwV1jQCDrPzn7ur4D_WGIdq2cYGu8706NexYlypQgLlZaKn_-jCr0OfflcxylNWTAiZ1MWPaoKPMaCrVqFdmvCZUPUdaLUNNOGzzUkTG9O5YPqmjdsNEEyx8o_r12mEtjW_5un5dkIpgFKg4AuCSn9G</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jeon, Yang Bae</creator><creator>Kim, Sang Bong</creator><general>대한기계학회</general><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>2002</creationdate><title>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</title><author>Jeon, Yang Bae ; Kim, Sang Bong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattices</topic><topic>Locomotion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Physics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Studies</topic><topic>Turning</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Yang Bae</creatorcontrib><creatorcontrib>Kim, Sang Bong</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Korean Database (DBpia)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Yang Bae</au><au>Kim, Sang Bong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</atitle><jtitle>Journal of mechanical science and technology</jtitle><date>2002</date><risdate>2002</risdate><volume>16</volume><issue>1</issue><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>1226-4865</issn><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]</abstract><cop>Seoul</cop><pub>대한기계학회</pub><doi>10.1007/BF03185158</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-4865 |
ispartof | Journal of mechanical science and technology, 2002, Vol.16 (1), p.83-93 |
issn | 1226-4865 1738-494X 1976-3824 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF03185158 |
source | Springer Nature |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Exact sciences and technology Fundamental areas of phenomenology (including applications) Lattices Locomotion Mathematical analysis Mathematical models Motion control Physics Robotics Robots Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Studies Turning Welding |
title | Modeling and Motion Control of Mobile Robot for Lattice Type Welding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Motion%20Control%20of%20Mobile%20Robot%20for%20Lattice%20Type%20Welding&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Jeon,%20Yang%20Bae&rft.date=2002&rft.volume=16&rft.issue=1&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=1226-4865&rft.eissn=1976-3824&rft_id=info:doi/10.1007/BF03185158&rft_dat=%3Cnurimedia_proqu%3ENODE00336636%3C/nurimedia_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021001445&rft_id=info:pmid/&rft_nurid=NODE00336636&rfr_iscdi=true |