Loading…

Modeling and Motion Control of Mobile Robot for Lattice Type Welding

This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and pre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2002, Vol.16 (1), p.83-93
Main Authors: Jeon, Yang Bae, Kim, Sang Bong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43
cites cdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43
container_end_page 93
container_issue 1
container_start_page 83
container_title Journal of mechanical science and technology
container_volume 16
creator Jeon, Yang Bae
Kim, Sang Bong
description This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF03185158
format article
fullrecord <record><control><sourceid>nurimedia_proqu</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF03185158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><nurid>NODE00336636</nurid><sourcerecordid>NODE00336636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AiCs4fL_4FARFEqCa5JE0fdW4qTAWZ-FjS5iIdXTOT7sH_3ojDiU8X7j53hG-WnTB6ySgtrm6mFJiWTOqdbMTKQuWgudhNb85VLrSS-9lBjAtKZcmBjbLbR2-xa_t3YnpLHv3Q-p6MfT8E3xHvUqduOyQvvvYDcT6QmRmGtkEy_1whecPOpt2jbM-ZLuLxph5mr9PJfHyfz57vHsbXs7wBSYdcYFMaKLUU2qCzZQ1Kg1VoNVoJDOu6oGnqapUIcJAanXCudtwV1jQCDrPzn7ur4D_WGIdq2cYGu8706NexYlypQgLlZaKn_-jCr0OfflcxylNWTAiZ1MWPaoKPMaCrVqFdmvCZUPUdaLUNNOGzzUkTG9O5YPqmjdsNEEyx8o_r12mEtjW_5un5dkIpgFKg4AuCSn9G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021001445</pqid></control><display><type>article</type><title>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</title><source>Springer Nature</source><creator>Jeon, Yang Bae ; Kim, Sang Bong</creator><creatorcontrib>Jeon, Yang Bae ; Kim, Sang Bong</creatorcontrib><description>This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1226-4865</identifier><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/BF03185158</identifier><language>eng</language><publisher>Seoul: 대한기계학회</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lattices ; Locomotion ; Mathematical analysis ; Mathematical models ; Motion control ; Physics ; Robotics ; Robots ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Studies ; Turning ; Welding</subject><ispartof>Journal of mechanical science and technology, 2002, Vol.16 (1), p.83-93</ispartof><rights>2002 INIST-CNRS</rights><rights>The Korean Society of Mechanical Engineers (KSME) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</citedby><cites>FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27910,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13416198$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Yang Bae</creatorcontrib><creatorcontrib>Kim, Sang Bong</creatorcontrib><title>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</title><title>Journal of mechanical science and technology</title><description>This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lattices</subject><subject>Locomotion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Physics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Studies</subject><subject>Turning</subject><subject>Welding</subject><issn>1226-4865</issn><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpd0N9LwzAQB_AiCs4fL_4FARFEqCa5JE0fdW4qTAWZ-FjS5iIdXTOT7sH_3ojDiU8X7j53hG-WnTB6ySgtrm6mFJiWTOqdbMTKQuWgudhNb85VLrSS-9lBjAtKZcmBjbLbR2-xa_t3YnpLHv3Q-p6MfT8E3xHvUqduOyQvvvYDcT6QmRmGtkEy_1whecPOpt2jbM-ZLuLxph5mr9PJfHyfz57vHsbXs7wBSYdcYFMaKLUU2qCzZQ1Kg1VoNVoJDOu6oGnqapUIcJAanXCudtwV1jQCDrPzn7ur4D_WGIdq2cYGu8706NexYlypQgLlZaKn_-jCr0OfflcxylNWTAiZ1MWPaoKPMaCrVqFdmvCZUPUdaLUNNOGzzUkTG9O5YPqmjdsNEEyx8o_r12mEtjW_5un5dkIpgFKg4AuCSn9G</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jeon, Yang Bae</creator><creator>Kim, Sang Bong</creator><general>대한기계학회</general><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><scope>DBRKI</scope><scope>TDB</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>2002</creationdate><title>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</title><author>Jeon, Yang Bae ; Kim, Sang Bong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lattices</topic><topic>Locomotion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Physics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Studies</topic><topic>Turning</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Yang Bae</creatorcontrib><creatorcontrib>Kim, Sang Bong</creatorcontrib><collection>DBPIA - 디비피아</collection><collection>Korean Database (DBpia)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Yang Bae</au><au>Kim, Sang Bong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Motion Control of Mobile Robot for Lattice Type Welding</atitle><jtitle>Journal of mechanical science and technology</jtitle><date>2002</date><risdate>2002</risdate><volume>16</volume><issue>1</issue><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>1226-4865</issn><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90° constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.[PUBLICATION ABSTRACT]</abstract><cop>Seoul</cop><pub>대한기계학회</pub><doi>10.1007/BF03185158</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1226-4865
ispartof Journal of mechanical science and technology, 2002, Vol.16 (1), p.83-93
issn 1226-4865
1738-494X
1976-3824
language eng
recordid cdi_crossref_primary_10_1007_BF03185158
source Springer Nature
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lattices
Locomotion
Mathematical analysis
Mathematical models
Motion control
Physics
Robotics
Robots
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Studies
Turning
Welding
title Modeling and Motion Control of Mobile Robot for Lattice Type Welding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nurimedia_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Motion%20Control%20of%20Mobile%20Robot%20for%20Lattice%20Type%20Welding&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=Jeon,%20Yang%20Bae&rft.date=2002&rft.volume=16&rft.issue=1&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=1226-4865&rft.eissn=1976-3824&rft_id=info:doi/10.1007/BF03185158&rft_dat=%3Cnurimedia_proqu%3ENODE00336636%3C/nurimedia_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-4ec9a398548aefd9b3683d6ed8ed531ebb70985fb685432358ef4ffbf2f7dac43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021001445&rft_id=info:pmid/&rft_nurid=NODE00336636&rfr_iscdi=true