Loading…

Inverse Polynomial Images Consisting of an Interval and an Arc

In this paper, some geometric properties of inverse polynomial images which consist of a real interval and an arc symmetric with respect to the real line are obtained. The proofs are based on properties of Jacobi’s elliptic and theta functions.

Saved in:
Bibliographic Details
Published in:Computational methods and function theory 2009-10, Vol.9 (2), p.407-420
Main Author: Schiefermayr, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053
cites cdi_FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053
container_end_page 420
container_issue 2
container_start_page 407
container_title Computational methods and function theory
container_volume 9
creator Schiefermayr, Klaus
description In this paper, some geometric properties of inverse polynomial images which consist of a real interval and an arc symmetric with respect to the real line are obtained. The proofs are based on properties of Jacobi’s elliptic and theta functions.
doi_str_mv 10.1007/BF03321736
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF03321736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF03321736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053</originalsourceid><addsrcrecordid>eNptz09LwzAYBvAgCtbpxU_Qs1LN_zQXYZZNCwM96Lm8TZPS0SaSzMG-vR0TvHh6eeHHw_MgdEvwA8FYPT6vMWOUKCbPUEaJFgVTlJ-jjEiiCs25ukRXKW0xFlwzlqGn2u9tTDZ_D-PBh2mAMa8n6G3Kq-DTkHaD7_PgcvB57Xc27mcAvjv-y2iu0YWDMdmb37tAn-vVR_VabN5e6mq5KQwhVBaKEme0ao3k3FGptIAOGLe6Na2WtsRKKlcKARoYsFJ3XVcahznM7a3Fgi3Q3SnXxJBStK75isME8dAQ3ByXN3_LZ3x_wmlGvrex2Ybv6Od-_-kfJjpXow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverse Polynomial Images Consisting of an Interval and an Arc</title><source>Springer Nature</source><creator>Schiefermayr, Klaus</creator><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><description>In this paper, some geometric properties of inverse polynomial images which consist of a real interval and an arc symmetric with respect to the real line are obtained. The proofs are based on properties of Jacobi’s elliptic and theta functions.</description><identifier>ISSN: 1617-9447</identifier><identifier>EISSN: 2195-3724</identifier><identifier>DOI: 10.1007/BF03321736</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Computational Mathematics and Numerical Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational methods and function theory, 2009-10, Vol.9 (2), p.407-420</ispartof><rights>Heldermann  Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053</citedby><cites>FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><title>Inverse Polynomial Images Consisting of an Interval and an Arc</title><title>Computational methods and function theory</title><addtitle>Comput. Methods Funct. Theory</addtitle><description>In this paper, some geometric properties of inverse polynomial images which consist of a real interval and an arc symmetric with respect to the real line are obtained. The proofs are based on properties of Jacobi’s elliptic and theta functions.</description><subject>Analysis</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1617-9447</issn><issn>2195-3724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptz09LwzAYBvAgCtbpxU_Qs1LN_zQXYZZNCwM96Lm8TZPS0SaSzMG-vR0TvHh6eeHHw_MgdEvwA8FYPT6vMWOUKCbPUEaJFgVTlJ-jjEiiCs25ukRXKW0xFlwzlqGn2u9tTDZ_D-PBh2mAMa8n6G3Kq-DTkHaD7_PgcvB57Xc27mcAvjv-y2iu0YWDMdmb37tAn-vVR_VabN5e6mq5KQwhVBaKEme0ao3k3FGptIAOGLe6Na2WtsRKKlcKARoYsFJ3XVcahznM7a3Fgi3Q3SnXxJBStK75isME8dAQ3ByXN3_LZ3x_wmlGvrex2Ybv6Od-_-kfJjpXow</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Schiefermayr, Klaus</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200910</creationdate><title>Inverse Polynomial Images Consisting of an Interval and an Arc</title><author>Schiefermayr, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiefermayr, Klaus</creatorcontrib><collection>CrossRef</collection><jtitle>Computational methods and function theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiefermayr, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Polynomial Images Consisting of an Interval and an Arc</atitle><jtitle>Computational methods and function theory</jtitle><stitle>Comput. Methods Funct. Theory</stitle><date>2009-10</date><risdate>2009</risdate><volume>9</volume><issue>2</issue><spage>407</spage><epage>420</epage><pages>407-420</pages><issn>1617-9447</issn><eissn>2195-3724</eissn><abstract>In this paper, some geometric properties of inverse polynomial images which consist of a real interval and an arc symmetric with respect to the real line are obtained. The proofs are based on properties of Jacobi’s elliptic and theta functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/BF03321736</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-9447
ispartof Computational methods and function theory, 2009-10, Vol.9 (2), p.407-420
issn 1617-9447
2195-3724
language eng
recordid cdi_crossref_primary_10_1007_BF03321736
source Springer Nature
subjects Analysis
Computational Mathematics and Numerical Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
title Inverse Polynomial Images Consisting of an Interval and an Arc
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Polynomial%20Images%20Consisting%20of%20an%20Interval%20and%20an%20Arc&rft.jtitle=Computational%20methods%20and%20function%20theory&rft.au=Schiefermayr,%20Klaus&rft.date=2009-10&rft.volume=9&rft.issue=2&rft.spage=407&rft.epage=420&rft.pages=407-420&rft.issn=1617-9447&rft.eissn=2195-3724&rft_id=info:doi/10.1007/BF03321736&rft_dat=%3Ccrossref_sprin%3E10_1007_BF03321736%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1126-721fc97bc644f26795ada34e9bcb96e80767f855a9a3a389ddd8cf04a372ee053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true