Loading…
Multi-objective Optimization for the Design of an Unconventional Sun-Powered High-Altitude-Long-Endurance Unmanned Vehicle
The use of High Altitude and Long Endurance (HALE) Unmanned Aerial Vehicles (UAVs) is becoming increasingly significant in both military and civil missions as High-Altitude Pseudo-Satellite (HAPS). Since this class of aircraft is usually powered by solar cells, it typically features unconventional c...
Saved in:
Published in: | Aerotecnica, missili e spazio missili e spazio, 2018-04, Vol.97 (2), p.68-84 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of High Altitude and Long Endurance (HALE) Unmanned Aerial Vehicles (UAVs) is becoming increasingly significant in both military and civil missions as High-Altitude Pseudo-Satellite (HAPS). Since this class of aircraft is usually powered by solar cells, it typically features unconventional configurations to maximize sun exposed surfaces. In the present paper, a Multidisciplinary Design Optimization (MDO) and a Multi-Objective Optimization (MOO) environment have been developed to provide a computational design tool for modeling and designing these unconventional aircraft in order to achieve as independent objectives the maximization of solar power flux, the maximization of the lift-to-drag ratio, and the minimization of mass. To this purpose, a FEM models generator, capable of managing unconventional geometries, and a solar power estimator, are suitably developed to be integrated within a multi objective optimization loop. The simultaneous use of MDO/MOO approaches, and Design Of Experiment (DOE) creation and updating principles, enables to efficiently take into account the multiple and contrasting objectives/constraints arising from the different disciplines involved in the design problem. The study is carried out by using two different commercial codes for multi-objective optimization and for structural and aeroelastic analyses respectively. The use of advanced MDO/MOO approaches revealed to be effective for designing unconventional vehicles. |
---|---|
ISSN: | 0365-7442 2524-6968 |
DOI: | 10.1007/BF03405802 |