Loading…

A Note on Derivations on the Algebra of Operators in Hilbert C-Modules

Let M be a Hilbert C *-module on a C *-algebra A and let E n d A ( M ) be the algebra of all operators on M . In this paper, first the continuity of A -module homomorphism derivations on E n d A ( M ) is investigated. We give some sufficient conditions on which every derivation on E n d A ( M ) is i...

Full description

Saved in:
Bibliographic Details
Published in:Mediterranean journal of mathematics 2016-06, Vol.13 (3), p.1167-1175
Main Authors: Kafi Moghadam, Mostafa, Miri, M., Janfada, A. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3
cites cdi_FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3
container_end_page 1175
container_issue 3
container_start_page 1167
container_title Mediterranean journal of mathematics
container_volume 13
creator Kafi Moghadam, Mostafa
Miri, M.
Janfada, A. R.
description Let M be a Hilbert C *-module on a C *-algebra A and let E n d A ( M ) be the algebra of all operators on M . In this paper, first the continuity of A -module homomorphism derivations on E n d A ( M ) is investigated. We give some sufficient conditions on which every derivation on E n d A ( M ) is inner. Next, we study approximately innerness of derivations on E n d A ( M ) for a σ -unital C *-algebra A and full Hilbert A -module M . Finally, we show that every bounded linear mapping on E n d A ( M ) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.
doi_str_mv 10.1007/s00009-015-0538-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00009_015_0538_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00009_015_0538_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwANzyAgE7Sbv0OA3GkIBd4BwljTs6lWZKOqS9PZ2GOOKL_Uv-LOtj7BbhDgFm9xnGqgRgIaBQRhzO2ATLEkShC33-N-vykl3lvAWQFSo5Ycs5f4sD8djzB0rttxva2OdjHD6Jz7sN-eR4bPh6R8kNMWXe9nzVdp7SwBfiNYZ9R_maXTSuy3Tz26fsY_n4vliJl_XT82L-ImppzCAC1dr5gA0ZNIECGEXgJClXO_RYgfS-1HU1U0FV5UxrRJJIJkhdB98ENWV4ulunmHOixu5S--XSwSLYowh7EmFHEfYowh5GRp6YPO72G0p2G_epH9_8B_oB0QphQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Note on Derivations on the Algebra of Operators in Hilbert C-Modules</title><source>Springer Nature</source><creator>Kafi Moghadam, Mostafa ; Miri, M. ; Janfada, A. R.</creator><creatorcontrib>Kafi Moghadam, Mostafa ; Miri, M. ; Janfada, A. R.</creatorcontrib><description>Let M be a Hilbert C *-module on a C *-algebra A and let E n d A ( M ) be the algebra of all operators on M . In this paper, first the continuity of A -module homomorphism derivations on E n d A ( M ) is investigated. We give some sufficient conditions on which every derivation on E n d A ( M ) is inner. Next, we study approximately innerness of derivations on E n d A ( M ) for a σ -unital C *-algebra A and full Hilbert A -module M . Finally, we show that every bounded linear mapping on E n d A ( M ) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-015-0538-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mediterranean journal of mathematics, 2016-06, Vol.13 (3), p.1167-1175</ispartof><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3</citedby><cites>FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kafi Moghadam, Mostafa</creatorcontrib><creatorcontrib>Miri, M.</creatorcontrib><creatorcontrib>Janfada, A. R.</creatorcontrib><title>A Note on Derivations on the Algebra of Operators in Hilbert C-Modules</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>Let M be a Hilbert C *-module on a C *-algebra A and let E n d A ( M ) be the algebra of all operators on M . In this paper, first the continuity of A -module homomorphism derivations on E n d A ( M ) is investigated. We give some sufficient conditions on which every derivation on E n d A ( M ) is inner. Next, we study approximately innerness of derivations on E n d A ( M ) for a σ -unital C *-algebra A and full Hilbert A -module M . Finally, we show that every bounded linear mapping on E n d A ( M ) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwANzyAgE7Sbv0OA3GkIBd4BwljTs6lWZKOqS9PZ2GOOKL_Uv-LOtj7BbhDgFm9xnGqgRgIaBQRhzO2ATLEkShC33-N-vykl3lvAWQFSo5Ycs5f4sD8djzB0rttxva2OdjHD6Jz7sN-eR4bPh6R8kNMWXe9nzVdp7SwBfiNYZ9R_maXTSuy3Tz26fsY_n4vliJl_XT82L-ImppzCAC1dr5gA0ZNIECGEXgJClXO_RYgfS-1HU1U0FV5UxrRJJIJkhdB98ENWV4ulunmHOixu5S--XSwSLYowh7EmFHEfYowh5GRp6YPO72G0p2G_epH9_8B_oB0QphQw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Kafi Moghadam, Mostafa</creator><creator>Miri, M.</creator><creator>Janfada, A. R.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160601</creationdate><title>A Note on Derivations on the Algebra of Operators in Hilbert C-Modules</title><author>Kafi Moghadam, Mostafa ; Miri, M. ; Janfada, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kafi Moghadam, Mostafa</creatorcontrib><creatorcontrib>Miri, M.</creatorcontrib><creatorcontrib>Janfada, A. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kafi Moghadam, Mostafa</au><au>Miri, M.</au><au>Janfada, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on Derivations on the Algebra of Operators in Hilbert C-Modules</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>1167</spage><epage>1175</epage><pages>1167-1175</pages><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>Let M be a Hilbert C *-module on a C *-algebra A and let E n d A ( M ) be the algebra of all operators on M . In this paper, first the continuity of A -module homomorphism derivations on E n d A ( M ) is investigated. We give some sufficient conditions on which every derivation on E n d A ( M ) is inner. Next, we study approximately innerness of derivations on E n d A ( M ) for a σ -unital C *-algebra A and full Hilbert A -module M . Finally, we show that every bounded linear mapping on E n d A ( M ) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-015-0538-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2016-06, Vol.13 (3), p.1167-1175
issn 1660-5446
1660-5454
language eng
recordid cdi_crossref_primary_10_1007_s00009_015_0538_y
source Springer Nature
subjects Mathematics
Mathematics and Statistics
title A Note on Derivations on the Algebra of Operators in Hilbert C-Modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20Derivations%20on%20the%20Algebra%20of%20Operators%20in%20Hilbert%20C-Modules&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Kafi%20Moghadam,%20Mostafa&rft.date=2016-06-01&rft.volume=13&rft.issue=3&rft.spage=1167&rft.epage=1175&rft.pages=1167-1175&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-015-0538-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s00009_015_0538_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-dec4abd1fe818ded083e0a2e3aca1b1902bb64c973d39674411e21e8d24cdbfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true