Loading…
Types of polynomial completeness of expanded groups
. The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every...
Saved in:
Published in: | Algebra universalis 2009-04, Vol.60 (3), p.309-343 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3 |
---|---|
cites | |
container_end_page | 343 |
container_issue | 3 |
container_start_page | 309 |
container_title | Algebra universalis |
container_volume | 60 |
creator | Aichinger, Erhard Mudrinski, Nebojša |
description | .
The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct. |
doi_str_mv | 10.1007/s00012-009-2136-y |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00012_009_2136_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00012_009_2136_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqHwAezyA4axHTfOElW8pEpsytpynHHVKoktu5XI3-MQ1l3N4t5zNYeQRwZPDKB-TgDAOAVoKGdiTacrUrCKA1UNY9ekyDGnkldwS-5SOs7lupEFEbspYCq9K4Pvp9EPB9OX1g-hxxOOmP4i_Alm7LAr99GfQ7onN870CR_-74p8v73uNh90-_X-uXnZUsuVOlHuWgGqa51SnZIcGDOsETUiN2hQcmtMC1Xt3No0ruZgAK2QopIi95ywYkXYsmujTymi0yEeBhMnzUDP1nqx1tlaz9Z6ygxfmJS74x6jPvpzHPObF6Bfvk5bUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Types of polynomial completeness of expanded groups</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Aichinger, Erhard ; Mudrinski, Nebojša</creator><creatorcontrib>Aichinger, Erhard ; Mudrinski, Nebojša</creatorcontrib><description>.
The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-009-2136-y</identifier><language>eng</language><publisher>Basel: Birkhäuser-Verlag</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra universalis, 2009-04, Vol.60 (3), p.309-343</ispartof><rights>Birkhäuser Verlag, Basel 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aichinger, Erhard</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><title>Types of polynomial completeness of expanded groups</title><title>Algebra universalis</title><addtitle>Algebra univers</addtitle><description>.
The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqHwAezyA4axHTfOElW8pEpsytpynHHVKoktu5XI3-MQ1l3N4t5zNYeQRwZPDKB-TgDAOAVoKGdiTacrUrCKA1UNY9ekyDGnkldwS-5SOs7lupEFEbspYCq9K4Pvp9EPB9OX1g-hxxOOmP4i_Alm7LAr99GfQ7onN870CR_-74p8v73uNh90-_X-uXnZUsuVOlHuWgGqa51SnZIcGDOsETUiN2hQcmtMC1Xt3No0ruZgAK2QopIi95ywYkXYsmujTymi0yEeBhMnzUDP1nqx1tlaz9Z6ygxfmJS74x6jPvpzHPObF6Bfvk5bUw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Aichinger, Erhard</creator><creator>Mudrinski, Nebojša</creator><general>Birkhäuser-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Types of polynomial completeness of expanded groups</title><author>Aichinger, Erhard ; Mudrinski, Nebojša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aichinger, Erhard</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aichinger, Erhard</au><au>Mudrinski, Nebojša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Types of polynomial completeness of expanded groups</atitle><jtitle>Algebra universalis</jtitle><stitle>Algebra univers</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>60</volume><issue>3</issue><spage>309</spage><epage>343</epage><pages>309-343</pages><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>.
The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.</abstract><cop>Basel</cop><pub>Birkhäuser-Verlag</pub><doi>10.1007/s00012-009-2136-y</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5240 |
ispartof | Algebra universalis, 2009-04, Vol.60 (3), p.309-343 |
issn | 0002-5240 1420-8911 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00012_009_2136_y |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algebra Mathematics Mathematics and Statistics |
title | Types of polynomial completeness of expanded groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Types%20of%20polynomial%20completeness%20of%20expanded%20groups&rft.jtitle=Algebra%20universalis&rft.au=Aichinger,%20Erhard&rft.date=2009-04-01&rft.volume=60&rft.issue=3&rft.spage=309&rft.epage=343&rft.pages=309-343&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-009-2136-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s00012_009_2136_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |