Loading…

Types of polynomial completeness of expanded groups

. The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every...

Full description

Saved in:
Bibliographic Details
Published in:Algebra universalis 2009-04, Vol.60 (3), p.309-343
Main Authors: Aichinger, Erhard, Mudrinski, Nebojša
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3
cites
container_end_page 343
container_issue 3
container_start_page 309
container_title Algebra universalis
container_volume 60
creator Aichinger, Erhard
Mudrinski, Nebojša
description . The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.
doi_str_mv 10.1007/s00012-009-2136-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00012_009_2136_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00012_009_2136_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqHwAezyA4axHTfOElW8pEpsytpynHHVKoktu5XI3-MQ1l3N4t5zNYeQRwZPDKB-TgDAOAVoKGdiTacrUrCKA1UNY9ekyDGnkldwS-5SOs7lupEFEbspYCq9K4Pvp9EPB9OX1g-hxxOOmP4i_Alm7LAr99GfQ7onN870CR_-74p8v73uNh90-_X-uXnZUsuVOlHuWgGqa51SnZIcGDOsETUiN2hQcmtMC1Xt3No0ruZgAK2QopIi95ywYkXYsmujTymi0yEeBhMnzUDP1nqx1tlaz9Z6ygxfmJS74x6jPvpzHPObF6Bfvk5bUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Types of polynomial completeness of expanded groups</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Aichinger, Erhard ; Mudrinski, Nebojša</creator><creatorcontrib>Aichinger, Erhard ; Mudrinski, Nebojša</creatorcontrib><description>. The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-009-2136-y</identifier><language>eng</language><publisher>Basel: Birkhäuser-Verlag</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra universalis, 2009-04, Vol.60 (3), p.309-343</ispartof><rights>Birkhäuser Verlag, Basel 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aichinger, Erhard</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><title>Types of polynomial completeness of expanded groups</title><title>Algebra universalis</title><addtitle>Algebra univers</addtitle><description>. The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqHwAezyA4axHTfOElW8pEpsytpynHHVKoktu5XI3-MQ1l3N4t5zNYeQRwZPDKB-TgDAOAVoKGdiTacrUrCKA1UNY9ekyDGnkldwS-5SOs7lupEFEbspYCq9K4Pvp9EPB9OX1g-hxxOOmP4i_Alm7LAr99GfQ7onN870CR_-74p8v73uNh90-_X-uXnZUsuVOlHuWgGqa51SnZIcGDOsETUiN2hQcmtMC1Xt3No0ruZgAK2QopIi95ywYkXYsmujTymi0yEeBhMnzUDP1nqx1tlaz9Z6ygxfmJS74x6jPvpzHPObF6Bfvk5bUw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Aichinger, Erhard</creator><creator>Mudrinski, Nebojša</creator><general>Birkhäuser-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090401</creationdate><title>Types of polynomial completeness of expanded groups</title><author>Aichinger, Erhard ; Mudrinski, Nebojša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aichinger, Erhard</creatorcontrib><creatorcontrib>Mudrinski, Nebojša</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aichinger, Erhard</au><au>Mudrinski, Nebojša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Types of polynomial completeness of expanded groups</atitle><jtitle>Algebra universalis</jtitle><stitle>Algebra univers</stitle><date>2009-04-01</date><risdate>2009</risdate><volume>60</volume><issue>3</issue><spage>309</spage><epage>343</epage><pages>309-343</pages><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>. The polynomial functions of an algebra preserve all congruence relations. In addition, if the algebra is finite, they preserve the labelling of the congruence lattice in the sense of Tame Congruence Theory. The question is for which algebras every congruence preserving function, or at least every function that preserves the labelling of the congruence lattice, is a polynomial function. In this paper, we investigate this question for finite algebras that have a group reduct.</abstract><cop>Basel</cop><pub>Birkhäuser-Verlag</pub><doi>10.1007/s00012-009-2136-y</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5240
ispartof Algebra universalis, 2009-04, Vol.60 (3), p.309-343
issn 0002-5240
1420-8911
language eng
recordid cdi_crossref_primary_10_1007_s00012_009_2136_y
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algebra
Mathematics
Mathematics and Statistics
title Types of polynomial completeness of expanded groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Types%20of%20polynomial%20completeness%20of%20expanded%20groups&rft.jtitle=Algebra%20universalis&rft.au=Aichinger,%20Erhard&rft.date=2009-04-01&rft.volume=60&rft.issue=3&rft.spage=309&rft.epage=343&rft.pages=309-343&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-009-2136-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s00012_009_2136_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-2fb308dbf88d852011a1937ee2aeae52caab047ff6a9f720a0ec353453a19f3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true