Loading…

Invariant measure and Lyapunov exponents for birational maps of P^2

In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it ha...

Full description

Saved in:
Bibliographic Details
Published in:Commentarii mathematici Helvetici 2001-01, Vol.76 (4), p.754-780, Article 754
Main Author: Diller, Jeffrey
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3
cites
container_end_page 780
container_issue 4
container_start_page 754
container_title Commentarii mathematici Helvetici
container_volume 76
creator Diller, Jeffrey
description In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.
doi_str_mv 10.1007/s00014-001-8327-6
format article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00014_001_8327_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00014_001_8327_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AgZ7mzjOEVX8VKoEB7hirR1bStXYkZ1U9O1JaU8cepk57HwrzRByL_iD4Lx6zJxzUbBJmFpAxeQFmYkCOFN1IS_JbDpwBmUlrslNzpsprapKzMhyFXaYWgwD7RzmMTmKoaHrPfZjiDvqfvoYXBgy9TFR0yYc2hhwSzvsM42efnzDLbnyuM3u7uRz8vXy_Ll8Y-v319Xyac0slHJgSsnCAyAsfF07A6icBV4YWSM0TnjwpXeNNF4IcACmbgwaa1XZGOWVbRZzIo5_bYo5J-d1n9oO014Lrg8r6OMKehJ9WEHLian-MbYd_joMCdvtWZIdSddlvYljmlrnM_lfSuNweg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Invariant measure and Lyapunov exponents for birational maps of P^2</title><source>Alma/SFX Local Collection</source><creator>Diller, Jeffrey</creator><creatorcontrib>Diller, Jeffrey</creatorcontrib><description>In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.</description><identifier>ISSN: 0010-2571</identifier><identifier>EISSN: 1420-8946</identifier><identifier>DOI: 10.1007/s00014-001-8327-6</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Measure and integration</subject><ispartof>Commentarii mathematici Helvetici, 2001-01, Vol.76 (4), p.754-780, Article 754</ispartof><rights>Swiss Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Diller, Jeffrey</creatorcontrib><title>Invariant measure and Lyapunov exponents for birational maps of P^2</title><title>Commentarii mathematici Helvetici</title><addtitle>Comment. Math. Helv</addtitle><description>In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.</description><subject>Measure and integration</subject><issn>0010-2571</issn><issn>1420-8946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AgZ7mzjOEVX8VKoEB7hirR1bStXYkZ1U9O1JaU8cepk57HwrzRByL_iD4Lx6zJxzUbBJmFpAxeQFmYkCOFN1IS_JbDpwBmUlrslNzpsprapKzMhyFXaYWgwD7RzmMTmKoaHrPfZjiDvqfvoYXBgy9TFR0yYc2hhwSzvsM42efnzDLbnyuM3u7uRz8vXy_Ll8Y-v319Xyac0slHJgSsnCAyAsfF07A6icBV4YWSM0TnjwpXeNNF4IcACmbgwaa1XZGOWVbRZzIo5_bYo5J-d1n9oO014Lrg8r6OMKehJ9WEHLian-MbYd_joMCdvtWZIdSddlvYljmlrnM_lfSuNweg</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Diller, Jeffrey</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010101</creationdate><title>Invariant measure and Lyapunov exponents for birational maps of P^2</title><author>Diller, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Measure and integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diller, Jeffrey</creatorcontrib><collection>CrossRef</collection><jtitle>Commentarii mathematici Helvetici</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diller, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant measure and Lyapunov exponents for birational maps of P^2</atitle><jtitle>Commentarii mathematici Helvetici</jtitle><addtitle>Comment. Math. Helv</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>76</volume><issue>4</issue><spage>754</spage><epage>780</epage><pages>754-780</pages><artnum>754</artnum><issn>0010-2571</issn><eissn>1420-8946</eissn><abstract>In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.1007/s00014-001-8327-6</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2571
ispartof Commentarii mathematici Helvetici, 2001-01, Vol.76 (4), p.754-780, Article 754
issn 0010-2571
1420-8946
language eng
recordid cdi_crossref_primary_10_1007_s00014_001_8327_6
source Alma/SFX Local Collection
subjects Measure and integration
title Invariant measure and Lyapunov exponents for birational maps of P^2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20measure%20and%20Lyapunov%20exponents%20for%20birational%20maps%20of%20P%5E2&rft.jtitle=Commentarii%20mathematici%20Helvetici&rft.au=Diller,%20Jeffrey&rft.date=2001-01-01&rft.volume=76&rft.issue=4&rft.spage=754&rft.epage=780&rft.pages=754-780&rft.artnum=754&rft.issn=0010-2571&rft.eissn=1420-8946&rft_id=info:doi/10.1007/s00014-001-8327-6&rft_dat=%3Cems_cross%3E10_1007_s00014_001_8327_6%3C/ems_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true