Loading…
Invariant measure and Lyapunov exponents for birational maps of P^2
In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it ha...
Saved in:
Published in: | Commentarii mathematici Helvetici 2001-01, Vol.76 (4), p.754-780, Article 754 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3 |
---|---|
cites | |
container_end_page | 780 |
container_issue | 4 |
container_start_page | 754 |
container_title | Commentarii mathematici Helvetici |
container_volume | 76 |
creator | Diller, Jeffrey |
description | In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure. |
doi_str_mv | 10.1007/s00014-001-8327-6 |
format | article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00014_001_8327_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00014_001_8327_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8AgZ7mzjOEVX8VKoEB7hirR1bStXYkZ1U9O1JaU8cepk57HwrzRByL_iD4Lx6zJxzUbBJmFpAxeQFmYkCOFN1IS_JbDpwBmUlrslNzpsprapKzMhyFXaYWgwD7RzmMTmKoaHrPfZjiDvqfvoYXBgy9TFR0yYc2hhwSzvsM42efnzDLbnyuM3u7uRz8vXy_Ll8Y-v319Xyac0slHJgSsnCAyAsfF07A6icBV4YWSM0TnjwpXeNNF4IcACmbgwaa1XZGOWVbRZzIo5_bYo5J-d1n9oO014Lrg8r6OMKehJ9WEHLian-MbYd_joMCdvtWZIdSddlvYljmlrnM_lfSuNweg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Invariant measure and Lyapunov exponents for birational maps of P^2</title><source>Alma/SFX Local Collection</source><creator>Diller, Jeffrey</creator><creatorcontrib>Diller, Jeffrey</creatorcontrib><description>In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.</description><identifier>ISSN: 0010-2571</identifier><identifier>EISSN: 1420-8946</identifier><identifier>DOI: 10.1007/s00014-001-8327-6</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Measure and integration</subject><ispartof>Commentarii mathematici Helvetici, 2001-01, Vol.76 (4), p.754-780, Article 754</ispartof><rights>Swiss Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Diller, Jeffrey</creatorcontrib><title>Invariant measure and Lyapunov exponents for birational maps of P^2</title><title>Commentarii mathematici Helvetici</title><addtitle>Comment. Math. Helv</addtitle><description>In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.</description><subject>Measure and integration</subject><issn>0010-2571</issn><issn>1420-8946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8AgZ7mzjOEVX8VKoEB7hirR1bStXYkZ1U9O1JaU8cepk57HwrzRByL_iD4Lx6zJxzUbBJmFpAxeQFmYkCOFN1IS_JbDpwBmUlrslNzpsprapKzMhyFXaYWgwD7RzmMTmKoaHrPfZjiDvqfvoYXBgy9TFR0yYc2hhwSzvsM42efnzDLbnyuM3u7uRz8vXy_Ll8Y-v319Xyac0slHJgSsnCAyAsfF07A6icBV4YWSM0TnjwpXeNNF4IcACmbgwaa1XZGOWVbRZzIo5_bYo5J-d1n9oO014Lrg8r6OMKehJ9WEHLian-MbYd_joMCdvtWZIdSddlvYljmlrnM_lfSuNweg</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Diller, Jeffrey</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010101</creationdate><title>Invariant measure and Lyapunov exponents for birational maps of P^2</title><author>Diller, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Measure and integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diller, Jeffrey</creatorcontrib><collection>CrossRef</collection><jtitle>Commentarii mathematici Helvetici</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diller, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant measure and Lyapunov exponents for birational maps of P^2</atitle><jtitle>Commentarii mathematici Helvetici</jtitle><addtitle>Comment. Math. Helv</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>76</volume><issue>4</issue><spage>754</spage><epage>780</epage><pages>754-780</pages><artnum>754</artnum><issn>0010-2571</issn><eissn>1420-8946</eissn><abstract>In this paper we construct and study a natural invariant measure for a birational self-map of the complex projective plane. Our main hypothesis - that the birational map be "separating" - is a condition on the indeterminacy set of the map. We prove that the measure is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this case, we also prove that saddle periodic points are dense in the support of the measure.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.1007/s00014-001-8327-6</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2571 |
ispartof | Commentarii mathematici Helvetici, 2001-01, Vol.76 (4), p.754-780, Article 754 |
issn | 0010-2571 1420-8946 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00014_001_8327_6 |
source | Alma/SFX Local Collection |
subjects | Measure and integration |
title | Invariant measure and Lyapunov exponents for birational maps of P^2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20measure%20and%20Lyapunov%20exponents%20for%20birational%20maps%20of%20P%5E2&rft.jtitle=Commentarii%20mathematici%20Helvetici&rft.au=Diller,%20Jeffrey&rft.date=2001-01-01&rft.volume=76&rft.issue=4&rft.spage=754&rft.epage=780&rft.pages=754-780&rft.artnum=754&rft.issn=0010-2571&rft.eissn=1420-8946&rft_id=info:doi/10.1007/s00014-001-8327-6&rft_dat=%3Cems_cross%3E10_1007_s00014_001_8327_6%3C/ems_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-8864f22a23f99eb2a8ec204b69a2de1f2f5fed6bf112e22b9dbabcc85db8f8cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |