Loading…
Monge–Kantorovich Norms on Spaces of Vector Measures
One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified...
Saved in:
Published in: | Resultate der Mathematik 2016-11, Vol.70 (3-4), p.349-371 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3 |
container_end_page | 371 |
container_issue | 3-4 |
container_start_page | 349 |
container_title | Resultate der Mathematik |
container_volume | 70 |
creator | Chiţescu, Ion Ioana, Loredana Miculescu, Radu Niţă, Lucian |
description | One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space. |
doi_str_mv | 10.1007/s00025-016-0531-1 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00025_016_0531_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00025_016_0531_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</originalsourceid><addsrcrecordid>eNp9j0tOAzEMhiMEEqVwAHZzgYDjzEwyS1TxqGhhwWMbZTIOtKKTKmmR2HEHbshJSBnWrPzL9mf5Y-xUwJkAUOcJALDiIGoOlRRc7LGRKBF4AwL3fzPyWmp5yI5SWgJUiAJHrJ6H_oW-P79ubb8JMbwv3GtxF-IqFaEvHtbWUU6-eCaXx8WcbNpGSsfswNu3RCd_dcyeri4fJzd8dn89nVzMuEOtN7zrpFdYkwbdSXK6EhIab5XPDeWrWrdt10hCR7osS-c65Z2lilChbMvWyTETw10XQ0qRvFnHxcrGDyPA7MTNIG6yuNmJG5EZHJiUd7NcNMuwjX1-8x_oBwn4XCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monge–Kantorovich Norms on Spaces of Vector Measures</title><source>Springer Link</source><creator>Chiţescu, Ion ; Ioana, Loredana ; Miculescu, Radu ; Niţă, Lucian</creator><creatorcontrib>Chiţescu, Ion ; Ioana, Loredana ; Miculescu, Radu ; Niţă, Lucian</creatorcontrib><description>One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.</description><identifier>ISSN: 1422-6383</identifier><identifier>EISSN: 1420-9012</identifier><identifier>DOI: 10.1007/s00025-016-0531-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Resultate der Mathematik, 2016-11, Vol.70 (3-4), p.349-371</ispartof><rights>Springer International Publishing 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</citedby><cites>FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chiţescu, Ion</creatorcontrib><creatorcontrib>Ioana, Loredana</creatorcontrib><creatorcontrib>Miculescu, Radu</creatorcontrib><creatorcontrib>Niţă, Lucian</creatorcontrib><title>Monge–Kantorovich Norms on Spaces of Vector Measures</title><title>Resultate der Mathematik</title><addtitle>Results. Math</addtitle><description>One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1422-6383</issn><issn>1420-9012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j0tOAzEMhiMEEqVwAHZzgYDjzEwyS1TxqGhhwWMbZTIOtKKTKmmR2HEHbshJSBnWrPzL9mf5Y-xUwJkAUOcJALDiIGoOlRRc7LGRKBF4AwL3fzPyWmp5yI5SWgJUiAJHrJ6H_oW-P79ubb8JMbwv3GtxF-IqFaEvHtbWUU6-eCaXx8WcbNpGSsfswNu3RCd_dcyeri4fJzd8dn89nVzMuEOtN7zrpFdYkwbdSXK6EhIab5XPDeWrWrdt10hCR7osS-c65Z2lilChbMvWyTETw10XQ0qRvFnHxcrGDyPA7MTNIG6yuNmJG5EZHJiUd7NcNMuwjX1-8x_oBwn4XCM</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Chiţescu, Ion</creator><creator>Ioana, Loredana</creator><creator>Miculescu, Radu</creator><creator>Niţă, Lucian</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Monge–Kantorovich Norms on Spaces of Vector Measures</title><author>Chiţescu, Ion ; Ioana, Loredana ; Miculescu, Radu ; Niţă, Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiţescu, Ion</creatorcontrib><creatorcontrib>Ioana, Loredana</creatorcontrib><creatorcontrib>Miculescu, Radu</creatorcontrib><creatorcontrib>Niţă, Lucian</creatorcontrib><collection>CrossRef</collection><jtitle>Resultate der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiţescu, Ion</au><au>Ioana, Loredana</au><au>Miculescu, Radu</au><au>Niţă, Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monge–Kantorovich Norms on Spaces of Vector Measures</atitle><jtitle>Resultate der Mathematik</jtitle><stitle>Results. Math</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>70</volume><issue>3-4</issue><spage>349</spage><epage>371</epage><pages>349-371</pages><issn>1422-6383</issn><eissn>1420-9012</eissn><abstract>One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00025-016-0531-1</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-6383 |
ispartof | Resultate der Mathematik, 2016-11, Vol.70 (3-4), p.349-371 |
issn | 1422-6383 1420-9012 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00025_016_0531_1 |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | Monge–Kantorovich Norms on Spaces of Vector Measures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monge%E2%80%93Kantorovich%20Norms%20on%20Spaces%20of%20Vector%20Measures&rft.jtitle=Resultate%20der%20Mathematik&rft.au=Chi%C5%A3escu,%20Ion&rft.date=2016-11-01&rft.volume=70&rft.issue=3-4&rft.spage=349&rft.epage=371&rft.pages=349-371&rft.issn=1422-6383&rft.eissn=1420-9012&rft_id=info:doi/10.1007/s00025-016-0531-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s00025_016_0531_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |