Loading…

Monge–Kantorovich Norms on Spaces of Vector Measures

One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified...

Full description

Saved in:
Bibliographic Details
Published in:Resultate der Mathematik 2016-11, Vol.70 (3-4), p.349-371
Main Authors: Chiţescu, Ion, Ioana, Loredana, Miculescu, Radu, Niţă, Lucian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3
cites cdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3
container_end_page 371
container_issue 3-4
container_start_page 349
container_title Resultate der Mathematik
container_volume 70
creator Chiţescu, Ion
Ioana, Loredana
Miculescu, Radu
Niţă, Lucian
description One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.
doi_str_mv 10.1007/s00025-016-0531-1
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00025_016_0531_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00025_016_0531_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</originalsourceid><addsrcrecordid>eNp9j0tOAzEMhiMEEqVwAHZzgYDjzEwyS1TxqGhhwWMbZTIOtKKTKmmR2HEHbshJSBnWrPzL9mf5Y-xUwJkAUOcJALDiIGoOlRRc7LGRKBF4AwL3fzPyWmp5yI5SWgJUiAJHrJ6H_oW-P79ubb8JMbwv3GtxF-IqFaEvHtbWUU6-eCaXx8WcbNpGSsfswNu3RCd_dcyeri4fJzd8dn89nVzMuEOtN7zrpFdYkwbdSXK6EhIab5XPDeWrWrdt10hCR7osS-c65Z2lilChbMvWyTETw10XQ0qRvFnHxcrGDyPA7MTNIG6yuNmJG5EZHJiUd7NcNMuwjX1-8x_oBwn4XCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monge–Kantorovich Norms on Spaces of Vector Measures</title><source>Springer Link</source><creator>Chiţescu, Ion ; Ioana, Loredana ; Miculescu, Radu ; Niţă, Lucian</creator><creatorcontrib>Chiţescu, Ion ; Ioana, Loredana ; Miculescu, Radu ; Niţă, Lucian</creatorcontrib><description>One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.</description><identifier>ISSN: 1422-6383</identifier><identifier>EISSN: 1420-9012</identifier><identifier>DOI: 10.1007/s00025-016-0531-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Resultate der Mathematik, 2016-11, Vol.70 (3-4), p.349-371</ispartof><rights>Springer International Publishing 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</citedby><cites>FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chiţescu, Ion</creatorcontrib><creatorcontrib>Ioana, Loredana</creatorcontrib><creatorcontrib>Miculescu, Radu</creatorcontrib><creatorcontrib>Niţă, Lucian</creatorcontrib><title>Monge–Kantorovich Norms on Spaces of Vector Measures</title><title>Resultate der Mathematik</title><addtitle>Results. Math</addtitle><description>One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1422-6383</issn><issn>1420-9012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j0tOAzEMhiMEEqVwAHZzgYDjzEwyS1TxqGhhwWMbZTIOtKKTKmmR2HEHbshJSBnWrPzL9mf5Y-xUwJkAUOcJALDiIGoOlRRc7LGRKBF4AwL3fzPyWmp5yI5SWgJUiAJHrJ6H_oW-P79ubb8JMbwv3GtxF-IqFaEvHtbWUU6-eCaXx8WcbNpGSsfswNu3RCd_dcyeri4fJzd8dn89nVzMuEOtN7zrpFdYkwbdSXK6EhIab5XPDeWrWrdt10hCR7osS-c65Z2lilChbMvWyTETw10XQ0qRvFnHxcrGDyPA7MTNIG6yuNmJG5EZHJiUd7NcNMuwjX1-8x_oBwn4XCM</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Chiţescu, Ion</creator><creator>Ioana, Loredana</creator><creator>Miculescu, Radu</creator><creator>Niţă, Lucian</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Monge–Kantorovich Norms on Spaces of Vector Measures</title><author>Chiţescu, Ion ; Ioana, Loredana ; Miculescu, Radu ; Niţă, Lucian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiţescu, Ion</creatorcontrib><creatorcontrib>Ioana, Loredana</creatorcontrib><creatorcontrib>Miculescu, Radu</creatorcontrib><creatorcontrib>Niţă, Lucian</creatorcontrib><collection>CrossRef</collection><jtitle>Resultate der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiţescu, Ion</au><au>Ioana, Loredana</au><au>Miculescu, Radu</au><au>Niţă, Lucian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monge–Kantorovich Norms on Spaces of Vector Measures</atitle><jtitle>Resultate der Mathematik</jtitle><stitle>Results. Math</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>70</volume><issue>3-4</issue><spage>349</spage><epage>371</epage><pages>349-371</pages><issn>1422-6383</issn><eissn>1420-9012</eissn><abstract>One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00025-016-0531-1</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1422-6383
ispartof Resultate der Mathematik, 2016-11, Vol.70 (3-4), p.349-371
issn 1422-6383
1420-9012
language eng
recordid cdi_crossref_primary_10_1007_s00025_016_0531_1
source Springer Link
subjects Mathematics
Mathematics and Statistics
title Monge–Kantorovich Norms on Spaces of Vector Measures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monge%E2%80%93Kantorovich%20Norms%20on%20Spaces%20of%20Vector%20Measures&rft.jtitle=Resultate%20der%20Mathematik&rft.au=Chi%C5%A3escu,%20Ion&rft.date=2016-11-01&rft.volume=70&rft.issue=3-4&rft.spage=349&rft.epage=371&rft.pages=349-371&rft.issn=1422-6383&rft.eissn=1420-9012&rft_id=info:doi/10.1007/s00025-016-0531-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s00025_016_0531_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-dd3f726e808d3ec851309fa7f8087f568bbd93e2ce8444ccd7fcae5e2723b4bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true