Loading…

On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms

In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more gen...

Full description

Saved in:
Bibliographic Details
Published in:Resultate der Mathematik 2021-03, Vol.76 (1), Article 5
Main Authors: Chaves, Rosa M. B., Sousa, L. A. M., Valério, B. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3
container_end_page
container_issue 1
container_start_page
container_title Resultate der Mathematik
container_volume 76
creator Chaves, Rosa M. B.
Sousa, L. A. M.
Valério, B. C.
description In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature c , namely those with n - 1 principal curvatures having the same sign everywhere. From assumptions on the scalar curvature R and the Gauss–Kronecker curvature K we characterize Clifford tori if c > 0 and prove that K is identically zero if c ≤ 0 .
doi_str_mv 10.1007/s00025-020-01309-x
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00025_020_01309_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00025_020_01309_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5z8A4a1HTfxEUWUIhUVCThbtruGVG0S2Qlq_x7Tcua0s9qZ1egRcsvhjgOU9wkAhGIggAGXoNn-jEx4kVcNXJwftWAzWclLcpXSBkAJwcWELFctHb6Qvsam9U1vt7Qe47cdxoiJdoHW3a7f4oD0pWmbXT4vDj3GNMZgfXY0LX3rs6LzLu7SNbkIdpvw5m9Oycf88b1esOXq6bl-WDIvCjEwYcUaVUBtIVRybbUMSmE5867QtkQdFHrphCp4xdchqMp5qBR3Dmah1M7JKRGnvz52KUUMpo-5XDwYDuaXhznxMJmHOfIw-xySp1DK5vYTo9l0Y2xzz_9SP1QDZMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</title><source>Springer Link</source><creator>Chaves, Rosa M. B. ; Sousa, L. A. M. ; Valério, B. C.</creator><creatorcontrib>Chaves, Rosa M. B. ; Sousa, L. A. M. ; Valério, B. C.</creatorcontrib><description>In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature c , namely those with n - 1 principal curvatures having the same sign everywhere. From assumptions on the scalar curvature R and the Gauss–Kronecker curvature K we characterize Clifford tori if c &gt; 0 and prove that K is identically zero if c ≤ 0 .</description><identifier>ISSN: 1422-6383</identifier><identifier>EISSN: 1420-9012</identifier><identifier>DOI: 10.1007/s00025-020-01309-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Resultate der Mathematik, 2021-03, Vol.76 (1), Article 5</ispartof><rights>Springer Nature Switzerland AG 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3</cites><orcidid>0000-0001-8442-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaves, Rosa M. B.</creatorcontrib><creatorcontrib>Sousa, L. A. M.</creatorcontrib><creatorcontrib>Valério, B. C.</creatorcontrib><title>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</title><title>Resultate der Mathematik</title><addtitle>Results Math</addtitle><description>In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature c , namely those with n - 1 principal curvatures having the same sign everywhere. From assumptions on the scalar curvature R and the Gauss–Kronecker curvature K we characterize Clifford tori if c &gt; 0 and prove that K is identically zero if c ≤ 0 .</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1422-6383</issn><issn>1420-9012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwA5z8A4a1HTfxEUWUIhUVCThbtruGVG0S2Qlq_x7Tcua0s9qZ1egRcsvhjgOU9wkAhGIggAGXoNn-jEx4kVcNXJwftWAzWclLcpXSBkAJwcWELFctHb6Qvsam9U1vt7Qe47cdxoiJdoHW3a7f4oD0pWmbXT4vDj3GNMZgfXY0LX3rs6LzLu7SNbkIdpvw5m9Oycf88b1esOXq6bl-WDIvCjEwYcUaVUBtIVRybbUMSmE5867QtkQdFHrphCp4xdchqMp5qBR3Dmah1M7JKRGnvz52KUUMpo-5XDwYDuaXhznxMJmHOfIw-xySp1DK5vYTo9l0Y2xzz_9SP1QDZMk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chaves, Rosa M. B.</creator><creator>Sousa, L. A. M.</creator><creator>Valério, B. C.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8442-1483</orcidid></search><sort><creationdate>20210301</creationdate><title>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</title><author>Chaves, Rosa M. B. ; Sousa, L. A. M. ; Valério, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaves, Rosa M. B.</creatorcontrib><creatorcontrib>Sousa, L. A. M.</creatorcontrib><creatorcontrib>Valério, B. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Resultate der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaves, Rosa M. B.</au><au>Sousa, L. A. M.</au><au>Valério, B. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</atitle><jtitle>Resultate der Mathematik</jtitle><stitle>Results Math</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>76</volume><issue>1</issue><artnum>5</artnum><issn>1422-6383</issn><eissn>1420-9012</eissn><abstract>In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature c , namely those with n - 1 principal curvatures having the same sign everywhere. From assumptions on the scalar curvature R and the Gauss–Kronecker curvature K we characterize Clifford tori if c &gt; 0 and prove that K is identically zero if c ≤ 0 .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00025-020-01309-x</doi><orcidid>https://orcid.org/0000-0001-8442-1483</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1422-6383
ispartof Resultate der Mathematik, 2021-03, Vol.76 (1), Article 5
issn 1422-6383
1420-9012
language eng
recordid cdi_crossref_primary_10_1007_s00025_020_01309_x
source Springer Link
subjects Mathematics
Mathematics and Statistics
title On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Principal%20Curvatures%20of%20Complete%20Minimal%20Hypersurfaces%20in%20Space%20Forms&rft.jtitle=Resultate%20der%20Mathematik&rft.au=Chaves,%20Rosa%20M.%20B.&rft.date=2021-03-01&rft.volume=76&rft.issue=1&rft.artnum=5&rft.issn=1422-6383&rft.eissn=1420-9012&rft_id=info:doi/10.1007/s00025-020-01309-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s00025_020_01309_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true