Loading…
On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms
In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more gen...
Saved in:
Published in: | Resultate der Mathematik 2021-03, Vol.76 (1), Article 5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Resultate der Mathematik |
container_volume | 76 |
creator | Chaves, Rosa M. B. Sousa, L. A. M. Valério, B. C. |
description | In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature
c
, namely those with
n
-
1
principal curvatures having the same sign everywhere. From assumptions on the scalar curvature
R
and the Gauss–Kronecker curvature
K
we characterize Clifford tori if
c
>
0
and prove that
K
is identically zero if
c
≤
0
. |
doi_str_mv | 10.1007/s00025-020-01309-x |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s00025_020_01309_x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s00025_020_01309_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5z8A4a1HTfxEUWUIhUVCThbtruGVG0S2Qlq_x7Tcua0s9qZ1egRcsvhjgOU9wkAhGIggAGXoNn-jEx4kVcNXJwftWAzWclLcpXSBkAJwcWELFctHb6Qvsam9U1vt7Qe47cdxoiJdoHW3a7f4oD0pWmbXT4vDj3GNMZgfXY0LX3rs6LzLu7SNbkIdpvw5m9Oycf88b1esOXq6bl-WDIvCjEwYcUaVUBtIVRybbUMSmE5867QtkQdFHrphCp4xdchqMp5qBR3Dmah1M7JKRGnvz52KUUMpo-5XDwYDuaXhznxMJmHOfIw-xySp1DK5vYTo9l0Y2xzz_9SP1QDZMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</title><source>Springer Link</source><creator>Chaves, Rosa M. B. ; Sousa, L. A. M. ; Valério, B. C.</creator><creatorcontrib>Chaves, Rosa M. B. ; Sousa, L. A. M. ; Valério, B. C.</creatorcontrib><description>In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature
c
, namely those with
n
-
1
principal curvatures having the same sign everywhere. From assumptions on the scalar curvature
R
and the Gauss–Kronecker curvature
K
we characterize Clifford tori if
c
>
0
and prove that
K
is identically zero if
c
≤
0
.</description><identifier>ISSN: 1422-6383</identifier><identifier>EISSN: 1420-9012</identifier><identifier>DOI: 10.1007/s00025-020-01309-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Resultate der Mathematik, 2021-03, Vol.76 (1), Article 5</ispartof><rights>Springer Nature Switzerland AG 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3</cites><orcidid>0000-0001-8442-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaves, Rosa M. B.</creatorcontrib><creatorcontrib>Sousa, L. A. M.</creatorcontrib><creatorcontrib>Valério, B. C.</creatorcontrib><title>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</title><title>Resultate der Mathematik</title><addtitle>Results Math</addtitle><description>In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature
c
, namely those with
n
-
1
principal curvatures having the same sign everywhere. From assumptions on the scalar curvature
R
and the Gauss–Kronecker curvature
K
we characterize Clifford tori if
c
>
0
and prove that
K
is identically zero if
c
≤
0
.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1422-6383</issn><issn>1420-9012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwA5z8A4a1HTfxEUWUIhUVCThbtruGVG0S2Qlq_x7Tcua0s9qZ1egRcsvhjgOU9wkAhGIggAGXoNn-jEx4kVcNXJwftWAzWclLcpXSBkAJwcWELFctHb6Qvsam9U1vt7Qe47cdxoiJdoHW3a7f4oD0pWmbXT4vDj3GNMZgfXY0LX3rs6LzLu7SNbkIdpvw5m9Oycf88b1esOXq6bl-WDIvCjEwYcUaVUBtIVRybbUMSmE5867QtkQdFHrphCp4xdchqMp5qBR3Dmah1M7JKRGnvz52KUUMpo-5XDwYDuaXhznxMJmHOfIw-xySp1DK5vYTo9l0Y2xzz_9SP1QDZMk</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chaves, Rosa M. B.</creator><creator>Sousa, L. A. M.</creator><creator>Valério, B. C.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8442-1483</orcidid></search><sort><creationdate>20210301</creationdate><title>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</title><author>Chaves, Rosa M. B. ; Sousa, L. A. M. ; Valério, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaves, Rosa M. B.</creatorcontrib><creatorcontrib>Sousa, L. A. M.</creatorcontrib><creatorcontrib>Valério, B. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Resultate der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaves, Rosa M. B.</au><au>Sousa, L. A. M.</au><au>Valério, B. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms</atitle><jtitle>Resultate der Mathematik</jtitle><stitle>Results Math</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>76</volume><issue>1</issue><artnum>5</artnum><issn>1422-6383</issn><eissn>1420-9012</eissn><abstract>In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature
c
, namely those with
n
-
1
principal curvatures having the same sign everywhere. From assumptions on the scalar curvature
R
and the Gauss–Kronecker curvature
K
we characterize Clifford tori if
c
>
0
and prove that
K
is identically zero if
c
≤
0
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00025-020-01309-x</doi><orcidid>https://orcid.org/0000-0001-8442-1483</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-6383 |
ispartof | Resultate der Mathematik, 2021-03, Vol.76 (1), Article 5 |
issn | 1422-6383 1420-9012 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s00025_020_01309_x |
source | Springer Link |
subjects | Mathematics Mathematics and Statistics |
title | On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Principal%20Curvatures%20of%20Complete%20Minimal%20Hypersurfaces%20in%20Space%20Forms&rft.jtitle=Resultate%20der%20Mathematik&rft.au=Chaves,%20Rosa%20M.%20B.&rft.date=2021-03-01&rft.volume=76&rft.issue=1&rft.artnum=5&rft.issn=1422-6383&rft.eissn=1420-9012&rft_id=info:doi/10.1007/s00025-020-01309-x&rft_dat=%3Ccrossref_sprin%3E10_1007_s00025_020_01309_x%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-2a2de5fe9a0f83da93f55e76cb49a7e9f5ec3b254181dff58bc0851bb06f79bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |